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Abstract— We investigate ultra-thin NbN films by means of 
spectroscopic ellipsometry and Raman spectroscopy. These 
measurements give important information on thickness 
dependent structural properties and phonon density of states. 
Thus first steps towards a microscopic understanding of the 
physics of phonons in these films and their coupling to the 
substrate can be made. As an ultimate goal we search to relate 
optical measurements with the specific performance of HEBs and 
in particular the IF bandwidth of HEB mixers. This work is 
part of a larger project to optimize NbN films for HEB 
applications including a relatively large number of deposition 
parameters. Within this parameter study a first surprising result 
is that a native Si <100> surface is non-optimal for good 
superconductive properties of NbN films. 
 

Index Terms—Hot-Electron-Bolometer (HEB), NbN, Raman-
spectroscopy, superconducting properties 
 

I. INTRODUCTION 

 
 

  HEB mixer devices based on superconducting NbN films 
have been manufactured by various groups [1,3,4,5,6,7, 
15,16,17,18,19,20]. One of the main limitations of HEB 
mixers for THz spectroscopy remains the relatively small IF 
bandwidth (~3-4 GHz) resulting in an exceedingly small 
Doppler-velocity range for astronomical applications. 
According to current understanding, the IF bandwidth of 
phonon-cooled HEBs is largely determined by the time scales 
on which phonons escape from the thin film into the substrate. 
Apart from film thickness, sound speed and acoustic matching 
between film and substrate play therefore a major role. 
Unfortunately, so far only very little is known about these 
parameters and most often these parameters have been freely 
adjusted to more complex measurements or have been derived 
from bulk values. To optimize films and devices it is however 
necessary to develop a detailed microscopic picture of the 
phonon escape process. On one side this requires modeling 
which takes into account the particular situation of phonons in 
very thin films. On the other side it is mandatory to search for  

 
measurements which allow direct access to the structure and 
dynamics of films with thickness below 5 nm. Due to the 
relative strong absorption of light in NbN films, optical 
investigations are surface sensitive. In this paper we present 
first results of spectral ellipsometry and Raman scattering and 
discuss preliminary interpretations of these measurements. 
  
 
 
 
 
 
 
 
 
 

Fig.1. Lattice structure of an ideal fcc NbN single crystalline 
film. The spheres correspond to the nitrogen atoms. The 
niobium atoms are located in the center of the bi-pyramids. 
We found that the Raman-scattering cross-section of this 
material is sufficient for investigations of ultra-thin films. 

II. FILM PREPARATION AND PARAMETER SPACE 
 
In the standard process of IRAM, thin NbN films are 
deposited from a 4 inch niobium target by 13.56 MHz RF 
magnetron sputtering technique on a 2 inch substrate in a 
nitrogen / argon / methane atmosphere (pressure: 0.852 Pa, 
flow Ar: 46 sccm, flow N2: 2.7 sccm, flow CH4: 0.6 sccm, 
power 240 W). The deposition is made at room temperature. 
The small amount of methane improves the superconducting 
properties of the NbN film [6,7]. However, carbon build into 
the films by this process might influence the device 
performance.  
As a first approach before a more general parameter study we 
try to understand the thickness dependence of optical and 
electrical properties of the films. 
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The dependence of the optical constants n and k at room 

temperature of NbN and the superconducting transition 
temperature on thickness and on partial methane pressure 
during the deposition will be discussed in the following 
chapters. A first attempt to use silicon as appropriate substrate 
material will be discussed. 

 

III. SPECTRAL ELLIPSOMETRY AND RAMAN SPECTROSCOPY 
 
The evaluation of the phonon cooling mechanism by an 

acoustic matching approach using the long wavelength 
properties as derived from bulk materials might not be optimal 
for ultra-thin NbN films. These films have usually 
polycrystalline or amorphous lattice structure [6,9]. Film 
stress and lattice disturbances can lead to important variations 
in the acoustic properties and the very small NbN film 
thickness will lead to changes in the phonon density of states.  

Fig. 2 shows wavelength-dependent ellipsometric 
measurements of the optical constants n and k of ultra-thin 
NbN films on fused quartz with 15 nm MgO seed layer [13]. 
An indication that important, thickness-dependent structural 
and electronic evolution is taking place is given by the 
thickness-dependent complex refractive index. For a higher 
film thickness a shift of the minimum in the refractive index n 
down to lower wavelengths λ can be observed.  

NbN is Raman-active. For  NbN films the wavelength 
dependent Raman scattering depth δR is entirely dominated by 
the strong absorption : 
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Raman scattering measurements of NbN are therefore surface 
sensitive. For the wavelength of He-Ne laser (λ = 632.817 
nm) the corresponding scattering depth is about δR ≈ 8 nm.  
We investigated NbN films by confocal Raman scattering 
setup with a spot diameter of 1 µm. To avoid heat-related 
oxidation effects of NbN in air we used a low laser power of    
P = 6.5 mW. 
 

First Raman measurements have been reported in [1,11]. 
Fig. 3 shows the Raman-spectra of ultra-thin NbN films of 
different thickness as measured at room temperature.  The 
right panel illustrates the corresponding bulk NbN phonon 
dispersion relation between Γ and X as measured by neutron 
diffraction methods [12]. A first information about the film 
structure is given by the very strong signal from acoustic 
phonons. This indicates a violation of the momentum conser-
vation due to grain sizes in the nm range. Former X-ray 
diffraction measurements show similar grain sizes [7,9]. For 
such polycrystalline films the Raman signal form of acoustic 
phonons is a good indicator of the phonon density of state 
(DOS). 

 
 

 
 
Fig. 2. Wavelength dependent ellipsometric measurements 

of the optical constants n and k of ultra-thin NbN films on 
fused quartz with a  15 nm MgO seed layer. 

 
For films of a thickness less than 3 nm a shift to higher 
frequencies and simultaneously a considerable broadening of 
the acoustic DOS peak can be observed. This effect can be 
either due to stress or phonon confinement. 

 

IV. SUPERCONDUCTING PROPERTIES 
 
In a second step we have studied the superconducting 
properties of reactive sputtered ultra-thin NbN films. An 
important parameter is the critical temperature Tc of the NbN 
film obtained by DC transport measurements. We investigated 
the dependence of the resistivity R(T) as function of the 
temperature T for various film thickness and for different 
lattice-stabilizing methane contents in the sputter gas 
atmosphere during the deposition process. The dependencies 
are shown in Fig. 4.  
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Fig. 3. Raman-spectra of ultra-thin NbN films and the corresponding NbN phonon-dispersion relation. 
 

 
Real HEB devices use a NbN film thickness between 3.5 
nm and 5 nm. The critical temperature in this range is about 
Tc ≈ 9 – 11 K. The standard methane flow in the IRAM 
deposition process is 0.6 sccm CH4 for a gas mixture of 46 
sccm argon and 2.7 sccm nitrogen. The total deposition 
pressure is p = 0.85 Pa. For a higher methane flow the 
critical superconducting temperatur is increased. 
 
To improve the thermal properties of HEB devices we take 
into account different substrate materials. A first attempt is 
the use of (100)-orientated silicon substrates. The surface of 
pure silicon is covered by a native SiOx layer [14]. The 
quality of reactive sputtered NbN on silicon substrates 
shows a dependence of the resistivity R(T) from the 
cleaning process of an argon plasma, illustrated in Fig. 5. 

 
 
 
Fig. 4. Dependence of the resistivity R(T) of ultra-thin NbN 
films on fused quartz with 15 nm MgO seed layer for 
different thickness and lattice carbon content. The thickness 
of the NbN film is about 4 nm. 
 
It is remarkable that without cleaning the resistivity is lower 
than with cleaning procedure. 

V. CONCLUSION 
 
Optical investigations by means of  ellipsometry and 
Raman  spectroscopy of ultra-thin NbN films can reveal 
information on structural and electronic properties. Our 
measurements indicate important interface stress for NbN 
films as grown on MgO buffer layers. 
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Fig. 5. Temperature dependence R(T) of 4 nm thick NbN 
films on (100)-oriented silicon substrate without MgO seed 
layer with different argon plasma cleaning time. The 
plasma power was 50 W (13.56 MHz RF) at  2 Pa (50 
sccm) Ar pressure. The power density for the cleaning 
process is about 2.5 W/cm2. 
 
Ellipsometry indicates a thickness dependence of refractive 
index which is likely due to structural inhomogeneity. 
Films on clean Si <100> show reduced superconducting 
properties as compared to Si substrates with native oxide, 
an effect which is likely due to the large lattice mismatch 
between NbN and Si. 
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