
 

  
Abstract—This paper presents a numerical simulation of a Si 

MITATT diode working in the submillimeter-wave and lower 
terahertz frequency range. Both the drift-diffusion model and 
full band Monte Carlo model are used to investigate the diode 
DC, small signal and large signal properties. Simulation shows 
that the Si MITATT diode is not limited by the dead-space of the 
impact ionization. For the diode under study, the same structure 
is capable of generating significant RF power at both 200 GHz 
and 300 GHz. 
 

Index Terms—Transit-Time Diode, Monte Carlo Simulation, 
Terahertz Frequency 
 

I. INTRODUCTION 
HE terahertz frequency range of the electromagnetic 
spectrum holds great promise for many applications 
including sensing, imaging, and communications [1]. 

However the availability of solid-state power sources with 
reasonable power levels is well recognized as one of the major 
obstacles for system applications in this frequency range. 
Two-terminal devices hold record performance in terms of 
power generation capability, particularly at higher millimeter- 
and submillimeter-wave frequencies. They also have the 
potential of reaching terahertz frequencies and generating 
significant power levels. Fig. 1 shows the state-of-the-art 
experimental results of transit-time diodes in cw mode [2, 3]. 
 

Most recent work focuses on developing GaAs TUNNETT 
diodes [3, 4] partially because of the availability of mature 
material growth technology and quiet noise behavior, but the 
power is inferior to Si IMPATT diodes [5-7] and inadequate 
for terahertz system applications. The reasons come from the 
moderate efficiency of TUNNETT mode operation and 
material properties. The GaAs figure of merit, (Fc×vsat)2, is 
half of that of Si, where Fc is the critic field and vsat is the 
saturation velocity. Wide bandgap materials, GaN and SiC for 
example, and new device structures have attracted attention to 
improve the power performance, but they are still limited by 
present fabrication techniques. In this paper we analyze 
transit-time diode operation in the terahertz frequency range 
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but focus on the power generation from Si MITATT diodes 
[8] which have a lower noise measure than IMPATT diodes. 
Simulation shows that Si MITATT diodes are capable of 
generating significant power in the terahertz frequency 
regime. 
 

 
Fig. 1.  State-of-the-art RF power levels from transit-time diodes under 
cw operation in the frequency range from 30 to 400 GHz. 

 

II. SMALL SIGNAL MODEL AND NUMERICAL SIMULATION 
TECHNIQUE 

 

A. Small signal Model 
To operate a Si transit-time diode in the MITATT mode, the 

generation region electric field needs to be low, normally 
below 2 MV/cm, to minimize the tunneling [2]. A minimum 
generation region width is needed to satisfy the breakdown 
condition ∫αdx = 1, where α is the ionization coefficient. For 
the terahertz application, the diode total width is small in order 
to create a desired drift angle, and therefore the generation 
region width is relatively large. The Gilden-Hines model for 
the generation region [9], as shown in Fig. 2(a), assumes a 
narrow generation region and it is no longer applicable. The 
Misawa model [10], as shown in Fig. 2(b), should be used 
instead to account for the transit-time effect in the generation 
region. The extra negative resistance -Rg comes from the 
transit time delay in the generation region. 
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Fig. 2.  Equivalent small signal circuit for the generation region. 

 

B. Drift-Diffusion Model 
The above small signal models explain transit-time diode 

operation in the linear region. However large signal models 
are needed to analyze nonlinear effects, design physical 
structures and estimate RF power generation [11]. The 
simplest one is the drift-diffusion model which solves the 
following continuity equations and Poisson’s equation 
numerically, 
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The g is the total generation-recombination rate. For the 
MITATT mode operation where both tunneling and avalanche 
effects exist, g becomes 

ta ggg += , 
where ga is the avalanche generation rate and gt is the 
interband tunneling rate using the Kane’s model [12]. The 
small recombination rate can be ignored. 
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C. Monte Carlo Model 
As the frequency approaches the terahertz regime, the 

carrier transient transport time is comparable to the carrier 
transit time, and the drift-diffusion model is no longer reliable 
because of the equilibrium transport assumption. The Monte 
Carlo (MC) method can be used instead. For low field 
transport, the electron energy is small and close to the band 
edge. Therefore the Si bandstructure can be simplified as six 
equivalent ellipsoidal valleys along the X directions, as shown 
in Fig. 3. However for high field transport as in the MITATT 
diode, the electrons distribute in the whole Brillouin zone, and 
the full bandstructure must be used to describe the density of 

states and carrier dynamics [13]. The full band MC model 
used in this paper is described elsewhere [14] which includes 
the avalanche generation. In addition, the tunneling generation 
is introduced by adding electrons and holes into the diode 
according to the tunneling probability using the Kane’s model. 
 

 
Fig. 3.  Si bandstructure. The left one shows the real bandstructure. The 
right one shows the simplified bandstructure used in a three-valley Monte 
Carlo program. 

 

D. Discussion 
The above three models are used in this paper to analyze 

the Si MITATT diode operation. The drift-diffusion model is 
used to generate quick numerical solutions and the Misawa 
model is used to explain the device physics. The full band MC 
model is more accurate predicting carrier dynamics in the 
terahertz frequency but requires much longer simulation 
times. Therefore it is used to confirm the result from the drift-
diffusion model. Simulation shows that the drift-diffusion 
model is useful to predict MITATT diode operation in the 
terahertz frequency range with proper estimation of generation 
region width as discussed in section III. 
 

III. MITATT MODE OPERATION 
 

A. Impact Ionization 
The avalanche process dominates the carrier generation in 

MITATT mode operation where new carriers are created by 
the electron and hole impact ionization. In this section the 
time and space response of the impact ionization is discussed. 
 

Impact ionization is fast, even in the terahertz frequency 
range, in the sense that the response time for the impact 
ionization is less than 0.1 ps when driven by a small signal 
electric field over a DC value of 1 MV/cm, as simulated from 
the full band MC model. The time for an electron or hole to 
gain 1 eV of energy is 0.1 about ps if it moves at 107 cm/s in a 
field of 1 MV/cm. Once the carrier accumulates enough 
energy, it quickly creates a new electron-hole pair due to the 
large scattering rate for the impact ionization. 
 

But the impact ionization is limited by the dead-space 
within which the ionization coefficient is zero [15]. The dead-
space is associated with the distance required to acquire the 
initial threshold energy, about one half times of bandgap 
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energy, to create a new electron-hole pair in order to conserve 
both energy and momentum. However, later simulation shows 
that the dead-space only degrades the diode operation by 
making the generation region wider. 
 

B. DC Results 
The drift-diffusion model and full band MC model were 

used to simulate a Si double drift region (DDR) transit-time 
diode as shown in Fig. 4. The asymmetric doping profile is 
used to accommodate the different properties of electrons and 
holes, yet it is achievable with current growth techniques. To 
make the comparison more valid, the material parameters used 
for the drift-diffusion model, the saturation velocities and 
ionization coefficients, are generated from the full band MC 
model. 

 

 
Fig. 4.  Si transit-time diode structure. 

 

 
Fig. 5.  I-V curve of the diode. The solid lines are from the drift-diffusion 
model and the x’s are from the MC model. The inset shows the 
multiplication factor as a function of current density from the drift-
diffusion model. 

 
Fig. 5 shows the diode DC I-V curves at 500 K. Although 

the breakdown voltages are slightly different from the two 
models, both results give similar current curves. The 
multiplication factor Ma is 600 at a current density of 150 

kA/cm2 and therefore the diode operates in the MITATT 
mode. The multiplication factor Ma is defined as the total 
current JTOT divided by the tunneling current Jt, i.e. Ma ≡ 
JTOT/Jt. 
 

An important difference is that the avalanche generation in 
the MC model are shifted from the central high field 
generation region towards the outside low field contact 
regions, resulting in a wider effective generation region, as 
shown in Fig. 6. This difference comes from the fact that the 
carriers need space to accumulate energy and release energy. 
The voltage drop across the shifted space is about the bandgap 
energy which is the threshold energy needed for impact 
ionization. 
 

 
Fig. 6.  Avalanche generation rate at current density of 150 kA/cm2. 

 

C. Small signal Results 
The small signal simulation shows a good match between 

the drift-diffusion model and the full band MC model, as 
shown in Fig. 7. The reason is that the Si relaxation times are 
very short compared to the rate of change in the electric field, 
so the equilibrium transport assumption is still reasonable. 
One difference is that the avalanche region width is larger 
from the full band MC model, resulting in smaller negative 
conductance and larger bandwidth. Nevertheless the drift-
diffusion model and hence the Misawa model still give 
reasonable results. 

 
Although the generation region is not localized, the diode 

provides negative conductance which comes from the 
avalanche delay, and the transit-time delay exists both in the 
drift region and in the generation region. Because the non-
localized avalanche region holds the transit-time effect over a 
wide frequency range, the negative conductance is wideband, 
as explained from the Misawa model. 

 
The injection current phase angle is shown in Fig. 8. The 

injection phase angle increases quickly as the avalanche 
generation starts, and when the current is dominated by the 
avalanche generation, the injection phase angle is relatively 
constant. Therefore the power generation from the MITATT 
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diodes is similar to the IMPATT diodes, as shown in the 
following large signal results. 

 

 
Fig. 7.  Diode small-signal admittance G+iB. 

 

 
Fig. 8.  Injection current phase angle. 

 

D. Large-Signal Results 
Because the negative conductance is wideband, the same Si 

MITATT diode is capable to generate RF power at both 200 
GHz and 300 GHz by choosing different device areas, as 
predicted by the drift-diffusion model. Fig. 9 and Fig. 10 show 
the power generation for different parasitic losses Rs. The DC 
current density is increased slightly at 300 GHz in order to 
increase the negative conductance and therefore RF power 
generation. 
 

The RF power generation decreases rapidly as Rs increases. 
Therefore low loss is important. For the transit-time diode, the 
Rs is dominated by the Ohmic contact resistance and 10-6 
Ω·cm2 for the contact resistivity is a conservative number for 
Si. Much lower resistivity has been reported [16] and even 
better results can be achieved from a forward biased Schottky 
contact [17]. Therefore it is possible to reduce the parasitic 
loss below 1 Ω for both cases. 

 
Fig. 9.  RF power generation from the Si MITATT diode for different Rs 
at 200 GHz. JDC = 150 kA/cm2, r = 6 µm. The contact resistance is 0.9 Ω if 
the contact resistivity is 10-6 Ω·cm2. 

 

 
Fig. 10.  RF power generation from the Si MITATT diode at 300 GHz. 
JDC = 175 kA/cm2, r = 4 µm. The contact resistance is 2 Ω if the contact 
resistivity is 10-6 Ω·cm2. 

 
Although the drift-diffusion model overestimates the RF 

power generation because the actual avalanche region width is 
wider and the negative conductance is smaller, the full band 
MC model shows the diode can still generate significant 
power at 200 GHz for similar bias condition, as shown in Fig. 
11. Actually the power prediction is close to the published Si 
IMPATT diode data on Fig. 1 at the same frequency range 
which makes the results reasonable [5-7]. If biased at a higher 
current density, significant RF power can be expected from 
300 GHz as well, as shown in Fig. 12. 
 

IV. CONCLUSION 
 

This paper analyzes Si transit-time devices working in the 
frequency range from 150 GHz to 400 GHz. Although the 
drift-diffusion model assumes equilibrium transport, it still 
gives reasonable results compared with more accurate full 
band Monte Carlo model. The reason is that the dead-space of 
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the impact ionization does not limit the Si MITATT diodes 
operation in this frequency range. It decreases the diodes 
negative conductance but increases the bandwidth as well. 
Simulation shows that the Si MITATT diode under study can 
produce useful power from 200 GHz up to 300 GHz. 
 

 
Fig. 11.  Large signal operation from the full band MC model at 200 GHz. 
VDC = 10.2 V, VRF = 5 V, JDC = 157 kA/cm2, r = 6 µm, Rs = 1 Ω, PL = 54 
mW, η = 3 %. 

 

 
Fig. 12.  Large signal operation from the full band MC model at 300 GHz. 
VDC = 10.5 V, VRF = 4 V, JDC = 211 kA/cm2, r = 4 µm, Rs = 1 Ω, PL = 20 
mW, η = 1.8 %. 
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