
 

 

  

Abstract—Two astronomical heterodyne receivers - SIS at 450 

GHz and HEB at 750 GHz – were successfully pumped. A 

photonic local oscillator fabricated with LT-GaAs was 

illuminated by two NIR semiconductor lasers, creating a beat 

frequency in the submm range. SIS junction I-V characteristics 

for two different LO power pump levels demonstrate that the 

power delivered by the photomixer is sufficient to pump an SIS 

mixer with an acceptable safety margin. 

In order to investigate that the photonic LO does not add 

significant internal noise to the mixer, we compared SIS-receiver 

noise temperatures -from hot / cold measurements-using a 

conventional solid-state LO and a photonic LO. A Martin-Puplett 

diplexer (MPD) was used to inject the LO signal into the signal 

path. In both cases, the system noise temperature was identical 

(Treceiver=170 K).  

Additionally, the photomixer was used as an LO in a heterodyne 

mixing experiment with a phonon-cooled HEB mixer from 650 

GHz to 750 GHz. For this purpose, the circularly polarized 

output signal from a spiral antenna photomixer was transformed 

to a lineal polarization by a MPD and mixed with a Hot-Cold 

Load in a second MPD, making the overall losses of the 

quasioptical design approximately 20 %. The HEB mixer 

consisted of a NbTiN bridge (approx 4.5 x 0.4 x 0.004µm³) on a 

Si3N4 membrane fabricated at KOSMA.  

Experiments realized under cryogenic conditions show that the 

power can be still considerably increased as to be sufficient for 

successful pumping of astronomical mixers in the supra-THz 

range.  
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I. INTRODUCTION 

erahertz generation by photonic techniques like 

difference-frequency mixing in ultrafast low-temperature 

grown GaAs (LT GaAs) photodetectors has been studied 

extensively during the last decade [1]. The huge bandwidth 

offered by one photomixing device (from DC to several THz) 

has a tremendous potential for many applications as 

radioastronomy, THz imaging, high resolution spectroscopy, 

skin cancer detection, security, defence, etc.  

The progress made in fabrication of LT-GaAs photomixers 

has leaded to carrier lifetimes below 0.5 ps at moderate bias 

voltages. This is important for operation in the supra-THz 

range because (together with the RC constant for MSM 

photomixers) it limits the 3 dB cutoff frequency of the device 

by (2πτ)
-1

 where τ is carrier recombination lifetime. 

In this paper we report on activities regarding photomixing 

as a Local Oscillator (LO) source for heterodyne detection in 

radio astronomy. The aim of these preliminary experiments is 

to allow the integration of a photonic LO in: 

- GREAT (German Receiver for Astronomy at Terahertz 

Frequencies), which will be a first-generation dual-channel 

heterodyne instrument for high resolution spectroscopy aboard 

SOFIA (Stratospheric Observatory For Infrared Astronomy). 

- APEX, the Atacama Pathfinder Experiment. 

Superconductor – Insulator - Superconductor 

(SIS) and Hot Electron Bolometer (HEB) 

pumping with LT-GaAs based photonic local 

oscillators.  

I. Cámara Mayorga
 
,
  
P. Muñoz Pradas, M. Mikulics, A. Schmitz, C. Kasemann, P. van der Wal, K. 

Jacobs and R. Güsten.  

T 

 
Fig. 1. Schematic diagram of the measurement system  
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II. OPTICAL HETERODYNE MIXING 

A. Photomixer section. 

As shown in figure 1, the scheme for optical heterodyning 

consisted of two near infrared (NIR) 780nm continuous-wave 

(CW) single mode lasers in Littman configuration (New Focus, 

model Velocity 6312), where at least one laser diode was 

tunable to make frequency selection possible. The output 

signal of the lasers ~6mW was combined and amplified in a 

tapered laser amplifier (Toptica TA100), which provided up to 

0.5W of combined power. 

The beam was then coupled into a single mode optical fiber 

and to an optical spectrometer to monitor frequency difference 

and to guarantee an equal power distribution between the two 

colors. To avoid optical feedback to the lasers and amplifier, 

optical isolators were included in the setup as well fiber optics 

with APC connectors (>60dB reflection losses).   
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Fig. 2. (a)  E-plane and H-plane power patterns measured for a λ dipole in 

resonance at 450 GHz. The high resistivity Si substrate has a 

hyperhemispherical form to reduce the divergence of the beam. (b) 

Microphotograph of the dipole antenna and finger structure of the photoactive 

area. 

 

The fiber optic was positioned to achieve an optimal 

photomixer illumination with a piezoelectric actuator. This 

device allowed a fine (~100nm) position control in three axes. 

The air gap between fiber optic and photomixer substrate acts 

as a Fabry-Perot etalon. To cancel out this effect, the air gap 

was filled with an optical adhesive [2] [3], which has a similar 

refraction index as the fiber optic, pigtailing the fiber optic to 

the photomixer. This step also inhibited the negative influence 

of mechanical vibrations which misaligned the fiber optic at 

large timescales and restricted the reproducibility of our 

experiments. 

 Once the two colors interfere on the photoactive area, 

electron-hole pairs are generated and immediately separated by 

the applied bias voltage. Details on the underlying physics 

phenomena may be found elsewhere [4], [5], [6]. The 

ultrashort carrier lifetime of LT-GaAs enable the 

photogenerated carriers to “follow” the envelope of the optical 

power. Since the photoactive area was patterned in the feed 

point of a resonant or broadband antenna, the beat signal was 

radiated to free space. The high dielectric constant of the GaAs 

photomixer substrate (εr=12.8), prevents the signal from being 

radiated backwards to the fiber optic. Its hyperhemispherical 

form avoided the formation of surface modes and provided 

acceptable beam directivity [7], [8].  

 

B. Mixing experiment with a  SIS at 450 GHz. 

The power performance and noise temperature of our 

photomixers was tested with a SIS mixer. 

It is well known that a photomixers have a high internal 

resistance [9] and thus impedance matching is difficult. For 

this reason, high radiation resistance antennas are preferable. 

A full wave dipole antenna shows a higher radiation resistance 

(~210 Ω on a GaAs Substrate) than a broadband logarithmic 

spiral antenna (~73 Ω on a GaAs Substrate). The polarization 

of a dipole is lineal; having the same orientation as the dipole 

itself and its gaussicity is higher than in case of spiral antenna. 

Our SIS mixer was only sensitive to linearly-polarized signals 

[10], which favored the use of a dipole antenna. 

 

The above mentioned characteristics motivated our group to 

perform a SIS mixer pumping experiment with a dipole 

antenna photomixer. Measurements of E and H planes show 

goog gaussicity and low sidelobes (figure 2).  

I-V characteristics at 450 GHz for two different LO power 

pump levels are shown in Figure 3. With a photocurrent of 0.6 

mA and a NIR optical power of 70 mW, the RF power 

generated was a factor 3 under device burnout, so that an 

acceptable safety margin was available to operate the photonic 

LO. 

In order to investigate wether the photonic LO does add 

significant internal noise to the mixer, we compared receiver 

noise temperatures -from hot/cold measurements- using a con-
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Fig. 3. The I-V curve of the SIS mixer in absence of LO signal and pumped 

by a photonic LO signal at 450GHz for different powers. 
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ventional solid-state LO and the photonic LO. A Martin-

Puplett diplexer (MPD) was used to inject the LO signal into 

the signal path. The divergent beam from the MPD output was 

transformed to a convergent beam with a plane-convex Teflon 

lens.  

The double sideband (DSB) noise temperature of the 

photomixer and solid state LO was measured at an 

intermediate frequency band of 2 to GHz. The result was 

identical (Treceiver = 170 K). In contrast to cascading 

multipliers, the noise contribution of a photonic LO is not 

expected to increase with frequency because the THz is 

directly generated by optical mixing of two laser signals, a 

process which is frequency independent. 

C. Mixing experiment with a HEB at 750 GHz. 

Once having tested the performance of our photonic LO with 

an SIS mixer, a more challenging experiment with a HEB at 

750 GHz was proposed. 

At theses frequencies no resonant antenna photomixer device 

was available so we used a photomixer with integrated 

logarithmic spiral (broadband) antenna. 

The HEB consisted of a NbTiN bridge on a Si3N4 membrane 

with dimensions approximately 4x0.4x0.004 µm³. Its design 

frequency was 750 GHz.  

The membrane waveguide HEB mixer used for the 

experiment was sensitive for vertical polarization. The 3.3mm 

beam waist position was located at the Dewar window. To 

make an optimum quasioptical coupling design, the beam 

parameters of the photomixer beam were previously measured. 

A computer controlled motorized translation stage in three 

axes was designed. Our RF power detector, a Golay cell, was 

installed with an iris diaphragm that was setup to achieve 

sufficient spatial resolution while obtaining an acceptable S/N 

ratio in the power detection. The beam was spatially 

characterized from measurements at different distances from 

the photomixer. A fit to a theoretical Gaussian-beam 

propagation was performed and the beam waist radius was 

extracted giving as result 3.3 mm (see figure 4). This result 

was similar to the beam waist of the HEB mixer, simplifying 

considerably the quasioptical design . 

The immediate problem associated with the use of a spiral 

antenna is the need of transforming its circular polarization to 

vertical, in order to match the vertical polarization of the HEB 

mixer. 

Two Martin-Puplett diplexers were used. The first 

transformed the polarization form circular to linear. The other 

MPD was used to inject Hot/Cold load for noise temperature 

measurements. 

 To assure that beam truncation doesn’t play a major role, the 

ratio between beam to aperture diameter at the output of the 

Martin-Purplett diplexer was computed giving as result 1/3, 

which corresponded to -77.8dB spillover loss. 

The quasioptical design of figure 5, which is symmetrical 

due to the identical beam waists of photonic LO and HEB 

mixer, uses an off-axis paraboloidal mirror with a focal length 

of 250mm.  

 

 

 
Fig. 4. The waist size was measured at different distances from the 

photomixer lens aperture plane. The data points were fitted to a Gaussian 

beam propagation curve. From the fit, the minimum waist (beam waist) w0 

was extracted. The dimensions of the photomixer substrate lens were 

calculated to synthesize an ellipse. The position of the beam waist coincides 

with the lens-to-air interface.  

 
Fig. 5.  Schematic of the quasioptical setup. A first MP diplexer transforms 

the circular polarization from the log-spiral antenna photomixer to vertical. 

The paraboloidal mirror makes the diverging LO beam convergent. The 

second MP diplexer injects the hot/cold load signal. 
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Fig. 6. IV-Characteristics of the HEB without LO power and pumped by the 

photomixer at 750GHz. The serial resistance originates at the IF-Filter of the 

HEB. 
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Figure 6 represents the IV characteristics of the HEB mixer 

with photonic LO power and without. The scatter results from 

standing waves and microphony. 

The photomixer was illuminated by 70mW NIR power and 

the photocurrent was 1.7mA, generating 450nW of RF power, 

which is near the photomixer burnout point. At the output of 

the quasioptical system, the RF power was 375 nW, which 

represents 20% quasi-optical and water absorption losses.  

The absorbed RF power was calculated by the isothermal 

method in the HEB to be 300 nW, which is congruent with this 

measurement. 

In case of using a resonant antenna design photomixer, the 

expected power could be higher by a factor of 3, due to its 

higher radiation resistance. Also the gaussicity and lineal 

polarization would simplify the quasioptical setup. 

III. FUTURE WORK. 

Next we will perform pump experiments at higher frequen-

cies with Hot Electron Bolometer mixers operated at 1.4 THz. 

For these purposes, dipole antenna design photomixers will be 

processed. Since the frequency roll-off of the photomixer 

drops 40dB/dec from 1THz, the photomixers will be operated 

at higher laser power and bias voltages to generate sufficient 

LO power. To avoid device burnout, our cryogenic setup [10] 

will be used.  

On the other hand, we will work on the reduction of our laser 

diode linewidth in order to achieve a sub-mm wave linewidth 

smaller than 100 KHz. 
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