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Abstract— This work is aimed at investigating the potential of
(Ba,Sr)TiO3 ferroelectric varactors in frequency multipliers
in the 100 GHz to several THz region. There has been an
increasing interest frequency generation in this frequency band
in recent years. An equivalent circuit is introduced with a voltage
dependent capacitanceC(V), constant resistances and constant
inductance components, to describe the impedance and multiplier
behavior over a wide frequency range. The measured C-V
curve is similar to that of the Heterostructure Barrier Varactors
(HBV). The components values are extracted using a random
optimisation method. As the thin film measurements are limited
to frequencies below 50 GHz, the equivalent circuit parameters
are also fitted using measured bulk data. The cut-off frequency
is approximately 3 THz, which is slightly higher than initially
obtained with HBVs. Harmonic balance simulations show an
efficiency of around 5% for a 3x300 GHz multiplier. Our results
show that the ferroelectric varactor has an interesting potential
for applications in frequency multipliers at submillimetre waves
and THz frequencies.

I. I NTRODUCTION

In recent years there has been an increasing interest of
power generation in the lower THz region [1]. The main appli-
cations are within science, spectroscopy, radio astronomy and
future communication technologies. However at frequencies
of one to a few THz, there is a drop in output power of the
currently available sources. This region is known as the THz
gap.

Several techniques are under investigation to fill this gap,
including varactor multipliers. The varactor multipliers can be
divided into two categories depending on the appearance of the
C-V curve, symmetric or asymmetric. A typical example of
the asymmetricC-V curves is displayed by Schottky diodes.
A Schottky diode in a multiplier will therefore generate both
even and odd harmonics. The Heterostructure Barrier Varactor
(HBV) on the other hand displays a symmetricC-V curve. The
absence of even harmonics in a symmetric varactor multipliers
simplifies the realisation of higher order multiplier circuits.
The potential of HBV varactors has already been proven in
real circuits [2].

For multiplier applications the limiting properties of varac-
tor are the breakdown voltage, resistive losses, and the tunabil-
ity of the capacitance (magnitude and shape) [3]. Ferroelectric
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Fig. 1. Cross section (a) and layout (b) of the varactor.

varactors using(Ba,Sr)TiO3 (BST) have high breakdown
voltage, very low resistive losses, considerable tuning, high
speed and are easily scalable [4], [5], [6]. Apart from this,
BST varactors are integratable on Si and have a rather simple
structure compared to the HBV [7]. It should be pointed out
that in ferroelectric materials the change in capacitance is
due to field dependent polarisation. In semiconductor devices
the capacitance changes due to electrons moving causing a
depleted region. There is a certain inertia in electrons that are
not present when moving polarisations. All of this makes the
ferroelectric varactor a promising candidate for multipliers in
the THz gap.

In this paper we investigate the potential of a ferroelectric
varactor made from(Ba,Sr)TiO3 in a frequency multiplier
using harmonic balance simulations.

II. EXPERIMENTAL

High resistivity (ρSi = 5kΩ · cm) platinized silicon
Pt/TiO2/SiO2/Si(100) was used as substrate. Pt (50 nm)/Au
(500 nm ) bottom electrode films were deposited by e-beam
evaporation at room temperature. 300 nm BST was deposited
by pulsed laser ablation from aBa0.25Sr0.75TiOx target at
650◦ C and 0.4 mBar oxygen pressure using a KrF examiner
laser (λ = 248 nm,τ =30 ns) operating at 10 Hz with an
energy density of 1.5J · cm−2. After deposition, the sample
was cooled down to room temperature at 950 mBar oxygen
pressure. The Au (500 nm)/Pt (50 nm) top electrode films were
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Fig. 2. Capacitance vs. DC bias at 1 MHz.

also deposited by e-beam evaporation at room temperature,
Fig. 1(a). The top electrodes were patterned with a lift-off
process. The layout of the top electrode consists of a central
circular patch (d1 =10 µm or d1 =30 µm in diameter) and a
co-centric outer electrode withd2 =150µm internal diameter
as seen in Fig. 1(b). The size of the outer electrode can be
considered infinite (5x5 mm).

The C-V characteristic was measured at 1 MHz using an HP
LCR meter on ad1 = 30 µm electrode.S11 was measured
using a Vector Network Analyser between 45 MHz and 45
GHz connected to a top electrode withd1 = 10 µm in
diameter. The size of the outer electrode is for both structures
d2 =150 µm. The capacitance, tunability andtan δ were
extracted from theS11 measurement using methods presented
in a previous work [8].

III. T HE EQUIVALENT CIRCUIT

TheC-V curve shown in Fig. 2 is measured at 1 MHz. Note
that the capacitance is measured using the larger (d1 =30 µm)
top electrode. The capacitance is easily rescaled to a (d1 =10
µm) top electrode, in order to be easy comparable to the high
frequency measurements, using Eq. 1. The capacitance of a
parallel plate varactor is calculated as:

C =
ε0εS

t
(1)

where S is the surface area of the top electrode;t is the
thickness of the ferroelectric film;ε0 = 8.85 · 10−12 (F/m) is
the dielectric constant of the vacuum andε (εmax ≈ 200) is the
permittivity of the ferroelectric film. The rescaled capacitance
is used in further simulations.

Fig. 3(a) shows the capacitance of the varactor at 0 V and at
15 V DC-bias. It can be seen that the permittivity is frequency
independent between 100 MHz and 45 GHz both at 0 V and 15
V. By comparing Fig. 3(a) and Fig. 2 we see that the maximum
and minimum of capacitance is preserved. The tunability is
calculated as:

T =
C(VMax)− C(VMin)

C(VMax)
=

C(EMax)− C(EMin)
C(EMax)

≈ 41%

(2)
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Fig. 3. The capacitance at 0V and 15v dc bias (a) vs. frequency. Measured
and calculated (from the equivalent circuit)tan δ (b) vs. frequency.

which is also frequency independent. We can anticipate a
larger tunability with more applied DC bias. As these mea-
surements are limited in frequency, due to the measurement
set up, we have to rely upon STO bulk data [9], [10] for an
extrapolation to higher frequencies. The bulk permittivity is
essentially frequency independent up to 3 THz.

In Fig. 3(b) tan δ can be seen as a function of frequency.
tan δ for the Device Under Test (DUT) is 0.04 at 45 GHz.
However from [8] we can calculate thattan δ in the film is
0.015 at 45 GHz. The intrinsic losses for bulk BST is 0.002
at 10 GHz and room temperature [10]. This means that the
extrinsic losses are about 5 times higher than the intrinsic
losses at 10 GHz. The origin of the fundamental (intrinsic)
loss is the interaction of the ac-field with the phonons of
the material. The extrinsic losses are associated with coupling
of the ac-field with defects. Among the known extrinsic loss
mechanisms those listed below are considered as significantly
contributing to the loss in the tunable microwave materials [6],
[11]:

1) Loss owing to charged defects.
2) Universal relaxation low mechanism.
3) Quasi-Debye contribution induced by random-field de-

fects.
The pure intrinsic losses are increasing asf1 [6] and the
extrinsic losses, due to charged defects, increases asf1/3 [11],
[13]. The losses in the electrode increases asf1/2 [11]. The
extrinsic losses are dominating at lower frequencies and the
intrinsic at higher .
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Fig. 4. Simplified equivalent circuits of the varactor.

With the measured and extracted results we now can deter-
mine an equivalent circuit. The capacitance is already found
in Fig. 3(a). Looking at the physical structure in Fig. 1(a)
and 1(b) we arrive at a rather complex equivalent circuit,
which can be simplified [8]. The simplified circuit is shown
in Fig. 4. The reason for an inductance in the equivalent
circuit is to model the increase intan δ appearing in STO
up to 3 THz [9]. The parameter values are found using a
random optimisation method and comparing both thinfilm and
bulk data. The voltage independent values areL = 8.3 fH,
RS = 0.11 Ω, RP = 3000 Ω and the capacitance varies in
betweenCMin = 0.20 and CMax = 0.34 pF. From these
parameterstan δ can be calculated:

tan δ =
Re(Z)
Im(Z)

(3)

the result is plotted as equivalent circuit in Fig. 3(b). Now that
all the parameters in the equivalent circuit are determined we
can calculate the cut-off frequency useful for comparison to
other varactors.

fc =
1/CMin − 1/CMax

2πRS
(4)

In the above equation the inductance and parallel resistance are
neglected. We can now see that the cut-off frequency is 3 THz,
which is the same order as for HBVs [2], [3]. The limit of 20
V in voltage swing is mainly due to the measurement set-up.
We estimate by using a higher applied voltage we would reach
CMin = 0.17 pF. This would increase the cut off frequency
40 %. Even if the cut-off frequency is an important figure-
of-merit regarding a varactor in a multiplier, it does not say
everything. As already stated the shape of theC-V curve has
a substantial influence on the varactor performance [3]. The
C-V dependence in Fig. 2 can be considered as symmetric
and can be therefore be described as [12]:

C(E) = 3.4 · 10−13 + 1.5 · 10−3E2 (5)

Equation (5) is expressed in the electric fieldE(V/m) instead
of applied bias voltage because of the scalability of ferroelec-
tric varactors. If the fringing fields are ignored then the top
electrode can be made as small as manufacturing tolerances
(1 nm). However the fringing field must be included when
the radius of the top electrode becomes comparable to the
thickness [12]. The minimum thickness of the ferroelectric
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Fig. 5. The conversion efficiency for the tripler as a function of the pump
frequencyfp

film is limited by the dead-layer effect [7], [11]. The dead-
layer is caused by an approximately 20 nm thick layer in
the ferroelectric, close to a metal electrode. This sets the
lowest limits of the film thickness. The nature of dead layers
are not completely understood but is usually associated with
interdiffusion, chemical reactions, contamination and/or struc-
tural defects in the metal/ferroelectrics interfaces [13]. The
problem is most pronounced in the ferroelectric film close to
the bottom electrode. The influence of the dead layer can be
reduced by using aSrRuO3 (SRO) interlayer [11]. A SRO
interlayer will increasetan δ. However also the capacitance
(two times) and tunability (> 60 %) will increase. The cut-off
frequency, however, will be approximately the same as without
SRO interlayer [14].

IV. T RIPLER PERFORMANCE

An in-house harmonic balance (HB) simulator was used
to calculate the conversion efficiency for the third order
harmonics. We used 15 dBm input power, theC-V dependence
in Eq. (5), (Fig. 2) and the equivalent circuit shown in Fig. 4
in the simulations. The resulting efficiency is shown in Fig. 5.
Also shown is a curve for the empirical expression for HBV
tripler:

η =
100

1 + α(n·fp

3·fc
)β

(6)

Whereα = 200 andβ = 1.5 are empirically determined and
n is the order of the multiplication [15]. These results are
confirmed for higher frequencies by a commercially available
ADS HB simulator. The efficiency for the ferroelectric varactor
is close to 100% for lower frequencies with a rapid decrease
as the frequencies approaches the cut-off frequency. This is in
correspondence with results presented on HBVs [3]. Compared
to these HBVs the series resistanceRS is lower but the
tunability is also lower. One major contributor to the lower
tunability is material defects in the ferroelectric thin film,
strains and film interfaces to metal electrodes.

V. ACCURACY

When making HB simulations, the accuracy of the parame-
ters involved is very important. In a previous paper we reported
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that the error in bothC and tan δ is less than±10% [8]. As
RS is derived from theS11 measurement in the same manner
as C, the error can be estimated to be less than±15%. The
HB simulations are very sensitive to error inRS [3]. If we
start by considering the possible error in the cut-off frequency
Eq. (1), we have:

∆fc < |fc
∆RS

RS
|+ 2|fc

∆C

CMin
| ≈ 0.35fc (7)

This shows that the error in cut-off frequency can be as large
as 35% or 1 THz. As we have seen before the efficiency is
very dependent on the cut-off frequency and therebyRS and
C. Dillner et al have investigated the large influence in the
efficiency of any change inRS . [3].

VI. D ISCUSSION AND CONCLUSION

This work is aimed at investigating the potential of
(Ba, Sr)TiO3 ferroelectric devices for THz multiplier appli-
cations. A simple equivalent circuit is used to achieve founda-
tions for harmonic balance simulations. The equivalent circuit
(L = 1.5 fH, RS = 0.11Ω, RP = 3000Ω, CMin = 0.20
and CMax = 0.34 pF) is designed to describe the frequency
dependence of bothtan δ and the impedance of the device. The
cut-off frequency of the device is approximately 3 THz, which
is of the same order of magnitude as the HBVs. Harmonic
balance simulations show an efficiency of around 5 % for a
3x300 GHz multiplier. All this put together shows that the
ferroelectric varactor has potential for frequency multipliers
in the THz region. However the results are very dependent
on material properties, the losses increased and the tunability
decreased for thin films compared to bulk. At the same time
the integration of a simple technology on Si is vital for future
applications.

Our results show that the ferroelectric varactor has an
interesting potential for applications in frequency multipliers
at submillimetre waves and THz frequencies.
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