
 

  
Abstract— We report generation of a signal of 667-857 

frequency range by means of a synthesizer of 15-20 GHz 
frequency range . Frequency of the reference is multiplied 30-45 
times by means of mixer based on superlattice structures. The 
mixer is used at the room temperature. 

 
Index Terms—THz frequency range, phase synchronization, 

superlattice structures, diode 
 

I. INTRODUCTION  

HE great interest to the THz frequency range is caused by 
new possibilities for investigations, first of all, in high 

resolution microwave spectroscopy. Thes e investigations 
substantially stimulate a lot of researches, for example radio-
astronomical ones [1]. 

However, this region is one of the least explored ranges. 
Until recently, it was difficult to efficiently generate and detect 
THz radiation. Most THz sources were either low-brightness 
emitters such as thermal sources, or cumbersome, single-
frequency molecular vapor lasers. The only source of wide-
range coherent THz radiation – backward wave oscillator 
(BWO) – generates till 1200 GHz. Recently, however, there has 
been a progress in THz technology due to the using of optical 
techniques such as femtosecond laser [2].  Application of such 
sources, based on femtosecond lasers, allow to create THz 
spectrometers [2], which are capable to solve various 
problems, for instance studying of biological molecules [3],  
liquids [4,5] and solids [6,7]. Although it is worth pointing out, 
that spectral resolution is worse than 1 cm-1. It is insufficient 
for the high resolution spectroscopy naturally. Necessary 
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condition of high spectral resolution is a source having narrow 
line and accurate control of frequency. Spectroscopic 
requirements to frequency parameters and spectrum of the 
high quality source are usually determined by necessity of 
resolving of Doppler broadened lines  (~10-6) and finding of 
frequencies and its displacement to within ~10-8÷10-10. 

Usually such a system - frequency synthesizer – represents 
a system of proportional multiplication (based on phase lock of 
generators of various ranges) of reference synthesizer 
frequency (as a rule of centimeter range). This  system fulfils 
the requirements described above. Its frequency stability is 
near 3x10-10 c-1, comparative spectral width is about 3x10-10 at 
λ =1 mm. The first frequency synthesizer, described in [8], had 
6 multiplication rings. In general, as nonlinear element in 
harmonic mixers of GHz frequency range planar 
semiconductors Schottky diodes (SD) are used [9-15]. 
However application of these diodes in the THz region requires 
increase of limiting frequency of the diode, fp, (a frequency 
which determines the upper limit of working range of diode). 
Unfortunately it is quite difficult due to some restrictions. On 
the one hand the limiting frequency is given by peculiarities of 
processes in semiconductors, particularly   by inertness of 
flight of electrons (for Schottky barrier). Time of flight for the 
best SD is about 1 ps [14]. On the other hand, the limiting 
frequency is specified for the most part by influence of 
parasitic capacitance of diode, C, and series resistance, Rs   
( CRf sp π21= ). The latter consists of resistance of 

semiconductor thickness, contact junction and outputs of 
diodes. Capacity of Schottky diode, which active area is 
several mkm, is not less than 3 fF [12-14]. Decrease of the 
series resistance by increasing of alloyage is restricted to the 
concentration of 5×1017 ?? -3 [13, 14]. 

More short response time and lesser capacities can be 
obtained by making planar diodes based on semiconductor 
superlattice structures (DSS) [16,17]. Current-voltage 
characteristic of the superlattice structures   has negative 
differential conductivity till to several THz [11,12].  All these 
peculiarities of the superlattice structures make them attractive 
for investigations, since generators, mixers, detectors based on 
these structures, can be used for elaboration of new sources 
and detectors of THz radiation.  

In the paper [21] there was done a comparison between 
planar diodes based on the superlattice structures  and planar 
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Schottky diodes.  To do it a special method was applied [22], 
which allows managing without THz detectors. According to 
the method a diode is treated with signals of two mm sources, 
which have different frequencies Fs and Fp. Low-frequency 
signal of beating, fif, (between harmonics mFs and nFs, where 
m,n are integers) is intensified by low-noise amplifier and 
observed on a screen of a spectral analyzer. Tuning the 
frequencies Fs and Fp and observing displacement of fif on the 
screen of analyzer, one can determine harmonic numbers m, n, 
appearing in the diode.  For studying diode’s characteristics in 
the mm frequency range, the diodes were put into metallic 
single-mode waveguides of 80 ÷120 GHz. Block diagram 
includes two synthesizers (80 ÷120 GHz and 115÷150 GHz), set 
of attenuators, low-noise amplifier of 1÷2 GHz frequency range, 
spectral analyzer of 0.1÷2 GHz and constant-current source. 
Maximal harmonic frequency observed for diodes based on 
superlattice structure s was 3000 GHz, but for SD it was 1800 
GHz. Experimental dependence of signal strength of beating on 
the harmonic’s number was approximated by a power 
polynomial with index of power -5.3. For DSS the index of 
power was -3.6 (see Fig1). 
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Fig. 1. Experimental dependence of the signal powe r on the harmonic’s 
number for Schottky diode and diode based on superlattice structures. It 
was approximated by a power polynomial. 

 
Therefore, planar diodes based on alloyed superstructures 

can be used for construction of THz sources. Let us consider 
application of amplifiers based on DSS for stabilization of 
subTHz generator.  

At present phase lock systems of BWO utilizing harmonic 
mixers based on SD with automatic tuning with respect to 
reference source of frequency range 8 ÷18 GHz. In this system 
phase lock is realized on 16 ÷26 harmonics of reference 
synthesizer HP 8673 E with output power 20 mW.  In the phase 
lock systems of BWO of frequency range 380÷1000 GHz 
harmonics 4 ÷10 of synthesizers (78 ÷118 GHz and 118÷178 
GHz) are used.  

 

II. EXPERIMENT  

Below we describe phase lock loop system of 526 ÷714 GHz 
frequency range of BWO OV-80 and phase lock loop system of 
667 ÷ 857 GHz of BWO OV-81, where harmonic mixer based on 
DSS was applied. In latter phase lock synchronization is 

fulfilled with respect to 30 th and 44th harmonics of reference 
synthesizer of 8 ÷20 GHz frequency range. Beforehand we 
measured characteristics of multipliers, based on DSS to use 
them as THz sources till 2.5 THz. Also there were done 
measurements (till 1 THz) of characteristics of harmo nic mixers 
based on DSS for the phase lock of BWO. Earlier 
measurements of the properties of multipliers based on DSS 
shown, that necessary power of input signal must be 12 ÷20 
mW. To optimize a work of DSS, we investigated possibility of 
operation of multipliers, based on DSS, under voltage. To 
study dependence of characteristics of DDS on voltage there 
was used frequency synthesizer (of 8 ÷18 GHz, with output 
power to 100 mW) as an input signal source. Application of 
such a synthesizer allowed comparing characteristics of DDS 
in two different regimes: with and without bias. 

As a result of the experiment we established that supply of 
bias causes decrease of necessary power of input signal, but 
the noise of output signal increases and some points of 
frequency range have frequency modulation of output signal. 
The latter indicates a bad balancing of reference generator’s 
channel and input of multiplier based on DSS.  We carried out 
qualitative measurements of noises of harmonic mixers on DSS 
in channel of intermediate frequency. The results shown that if 
a commercial amplifier M42136 “Saljut” (with noise coefficient 
k  =2 dB at t=250C) is used as intermediate-frequency amplifier, 
mixer’s noise is higher than one of the multiplier per 5 dB. The 
measurements were done by Hewlett Packard E4402B. 
Conversion ratio of harmonic mixer of input signal (power 0.5 
mW, frequency 844 GHz) with 44th harmonic of reference 
generator (power 20 mW, frequency 19.175 GHz) is 80 dB. 

Block diagram of the BWO phase-lock loop system for OV-
80 and OV-81 is shown on pic.2.  
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Fig. 2. Block diagram of the BWO phase-lock loop system 

 
As a reference generator we apply a synthesizer of 

frequency range 0.01 ÷20 GHz in the set-up. In the frequency 
range of 667 ÷857 GHz synchronization is obtained at the 37th 
and 44th harmonics of reference synthesizer. The intermediate 
frequency channel consists of three multipliers M42136 and 
band-pass filter with bandwidth 40 MHz at the frequency 300 
MHz. The total gain constant of intermediate-frequency 
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amplifier is 85 dB. To improve a noise-to-signal ratio incoming 
to the frequency-phase detector, the bandwidth of intermediate 
frequency channel is chosen as narrow as possible, but it is 
taken into account bandwidth of signal, which is generated by 
BWO freely. This bandwidth is 20 MHz. Control of the BWO 
frequency is done by two-channel scheme.  

Command of frequency-phase detector is divided on two 
channels: low-frequency one (0-40 kHz) and high-frequency 
channel (higher than 40 kHz). Frequency-phase detector is  
built on a chip PE3236 of Peregrine with reference frequency 50 
MHz. Control of BWO frequency at low-frequency channel is 
realized by high-voltage power supply. Command of high-
frequency channel is given to a cathode of BWO trough 
disjunctive capacity. Such a control scheme of BWO let one 
obtain maximum broad synchronization range of 5 MHz. 

Spectral analysis of characteristics of PLL BWO is done at 
the signal of intermediate frequency. On fig.3 the spectrum of 
signal of intermediate frequency (at a frequency 300 MHz) of 
BWO output signal (on a frequency 844 GHz) is  presented. The 
measurements are done by spectrum analyzer ROHDE 
SCHWARZ 1093.4495.30. 

Our results of investigation of the BWO synchronization 
and characteristics of harmonic mixers based on DSS give a 
possibility to obtain BWO synchronization (till 1 THz), 
applying the presented method. 
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