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Abstract— For the coupling from free space to waveguide
corrugated horns are presently the optimum choice. Currently
the extension of the waveguide technology towards THz fre-
quencies, e.g. with silicon micromachining techniques, looks very
promising, which increases the demand for THz horns. The
HIFI project has shown that even at submm frequencies it is
not easy to manufacture reliable corrugated horns for cryogenic
applications. For small corrugations it is difficult to avoid fluid
inclusions in the corrugations during electroforming. In addition
experience has shown that dust or small metal particles can
easily settle in between the corrugations and are very difficult to
remove. Smooth-walled horns do not have these disadvantages.
We will present measurements of a prototype smooth-walled horn
for 756-924 GHz. The horn is designed by C. Granet [1] and
manufactured by RPG [2]. The measurements were done at 800,
840 and 860 GHz with an AB-mm vector network analyzer at
the University of Bern. We have also simulated the performance
of the horn in CST Microwave Studio [3]. The simulation results
are in a good agreement with the measured data. With the
same measurement setup we measured a corrugated horn for
the HIFI band 2 Mixer Unit. We conclude that we can replace
the corrugated horn by a properly designed smooth-walled horn
without significant loss of performance. This is an important step
towards building THz waveguide mixers.

I. INTRODUCTION

The fabrication of corrugated horns at THz frequencies is
complicated by its small dimensions. For example at 1.9 THz
(GREAT receiver for SOFIA [4]) the corrugations are smaller
than 25 µm. In general a metal mandrill of the horn-inside
is machined, subsequently electroformed, and then removed
by etching. The madrills itself are already a major challenge
for THz frequencies, but in addition during the electroforming
process corrosive fluid inclusions may be formed in the narrow
corrugations that break corrugations of the horn for example
when it is thermally cycled. Although a method has been found
in the course of the HIFI project [2] to avoid the inclusions
for horns up to 1.1 THz this method is expensive, time
consuming and rather dependent on workmanship. Another
method would be, if the mandrill can still be machined, to fill
the mandill corrugations by other methods than electroforming
[5] or fabricate the horns in split block technique by silicon
micro machining [6] and metal plate them afterwards. Both
methods are also time consuming, expensive and/or require
large investments.

To overcome the limitations imposed by the corrugations
Granet et al. at the ICT centre, CSIRO, Australia, have
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Fig. 1. Horn profile of the smooth-walled horn for 840 GHz center frequency.

developed a method [1] for optimizing the shape of a smooth-
walled spline-profile feed horn to overcome these limitations
imposed by corrugations. The optimizing method allows to
model feed horns that produce good Gaussian beam shapes at
a certain distance from the horn. This method is an algorithm
that varies the spline-profile and checks the resulting antenna
pattern via a mode matching algorithm for compliance with
the pattern to be met. A resulting horn profile is shown in
figure 1.

This technique makes it possible to manufacture high per-
formance feed horns considerably easier than up to now.
That is especially interesting since at KOSMA, besides the
efforts at submm frequencies, there are (array) instruments
being developed at 1.4 and 1.9 THz, and the development of
this feed horn technology mitigates the difficulties that arise
from the high frequencies. To validate the horns we have
measured the pattern of a smooth-walled horn with a center
frequency of 840 GHz with a vector network analyzer. With
the same set-up, within the HIFI project we have done also
measurements at a HIFI band 2 corrugated horn. To calculate
the horn performance we use a 3D field simulation. This
is a good check for the measurement results and helps to
include machining tolerances into the calculation. We also
used the simulation to compare the smooth-walled horn and
the corrugated horn which are designed for different center
frequencies.

II. MEASUREMENT

The complex beam patterns of the horn antenna were
measured with a vector-network analyzer from AB-Millimetre
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Fig. 2. Measurement setup, the horn under test is mounted at the detector

[7]. Coherent submm radiation is generated by a phase-locked
Gunn oscillator using harmonic multiplication and transmitted
to free space with a potter horn antenna. Although the horn
radiates polarized radiation, a grid is used to be sure there
is no radiation with the wrong polarization present at the
horn under test. This is primarily important for the cross
polarization measurement. The horn under test is feeding
a harmonic Schottky diode mixer which is pumped by a
second Gunn oscillator. This oscillator is phase-locked to
the same reference signal as the first one (Fig. 2). A small
frequency offset is maintained between the two oscillators
which allows heterodyne detection of amplitude and phase
with high dynamic range. The far-field distance 2D2/λ of the
horns under test is the largest in the case of the corrugated
horn at 800 GHz with 80 mm. All measurements described in
this paper were done at a distance between the source and
the test horn of around 200 mm. The measurement test setup
comprises a rotational stage where the feed horn under test is
mounted with its phase center close to the rotation axis of the
stage. Seen from the device under test the transmitter rotates
on a spherical surface. This corresponds to the definition for
the coordinate system of Ludwig 3 [8] as it is used in the next
section for the 3D-simulation.

TABLE I
DESIGN PARAMETERS OF BOTH HORNS. A = APERTURE;
Fr = FREQUENCY RANGE; Fc = CENTER FREQUENCY

smooth-walled horn corrugated horn
A [mm] Fr [GHz] Fc [GHz] A [mm] Fr [GHz] Fc [GHz]

2.9 756-924 840 3.86 620-820 720

The single mode waveguide is tapered via a transition block
towards the waveguide with different dimensions of the room
temperature Schottky mixer. The signal source is mounted on
a x-y-z-linear stage which allows to change the horn-to-horn
distance with a relative accuracy of about a micron. To reduce
the influence of standing-wave patterns, the signal source
linear stage is moved 4 times about λ/4 towards the horn under
test, with an angular sweep at each position. The retrieved
amplitude and phase information then allows to correct for
standing waves [9].

We have done measurements of the corrugated horn at 625,
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Fig. 3. The simulation results and measured data are in excellent agreement,
here in H-plane for 800 GHz at the smooth-walled horn
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Fig. 4. The data of the corrugated horn and the simulation match equally
well, here in D-plane for 800 GHz
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Fig. 5. The data of the smooth-walled horn compared to the data of the
corrugated HIFI horn in E-plane. Both at their respective center frequency.

714 and 800 GHz. Near the band center (FC = 720 GHz) at
714 GHz we have only measurements with a dynamic range
of approx. 25 dB. The smooth-walled horn is tested at 800, 840
and 860 GHz. The range was limited by the frequency range
of the source oscillator (795 - 860 GHz). For all measurements
a Gunn with multipliers is used as a source. The design
parameters of both horns are shown in table I. To measure E-,
H- and D-plane the horn and the source (with grid) is rotated
around the longitudinal axis by respectively 90 and 45 deg.
Further detailes about the measurements of the smooth-walled
horn are given in [10].

III. 3D SIMULATION

For the 3D simulation the transient solver of CST Mi-
crowave Studio is used. This is a time domain solver which
calculates the development of fields through time at discrete
locations and at discrete time samples. It calculates the trans-
mission of energy between the exiting port and open space
of the investigated structure. The far-field components are
derived from the calculated fields inside the horn. The software
makes the calculation of patterns for arbitrary frequencies in
every plane possible. As already mentioned in section II the
definition by Ludwig 3 is used to get the 1D data in E-,
H- and D-plane. In this definition the vertical and horizontal
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Fig. 6. The data of the smooth-walled horn compared to the data of the
corrugated HIFI horn in H-plane. Both at their respective center frequency.

‐40 ‐20 0 20 40

‐50

‐40

‐30

‐20

‐10

0
‐40 ‐20 0 20 40

‐50

‐40

‐30

‐20

‐10

0

re
la
tiv

e 
A
m
pl
itu

de
 [d

B]

Θ [deg]

 HIFI horn (720GHz)
 Smooth‐walled Horn 

            (840GHz)

‐40 ‐20 0 20 40
‐200

‐150

‐100

‐50

0

50

100
‐40 ‐20 0 20 40

‐200

‐150

‐100

‐50

0

50

100

ph
as
e 
[d
eg
]

Θ [deg]

 HIFI horn (720GHz)
 Smooth‐walled Horn 

            (840GHz)

Fig. 7. The data of the smooth-walled horn compared to the data of the
corrugated HIFI horn in D-plane. Both at their respective center frequency.
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components are calculated as follows:

Ehorizontal = EΘ cos φ − Eφ sinφ (1)
Evertical = EΘ sinφ + Eφ cos φ (2)

The phase is calculated using the real (Re) and imaginary
(Im) part of the signal measured at a certain position:

6 E = arctan
(

Im(E)
Re(E)

)
(3)

An illustration of the coordinate system is shown in figure
9. In addition the 3D simulation gives us the field distribution
inside the horn. An advantage to the mode matching method
is the possibility to simulate fabricational imperfections like
a burr. We have done it successful for interpretation of
measurements within the HIFI project. A comparison of the
simulation with measured data is done for 625 and 800 GHz
at the corrugated horn and for 800, 840 and 860 GHz at
the smooth-walled horn. The simulated data are in excellent

X

Y

Z

Fig. 9. The Ludwig 3 coordinate system as it is used in the simulation with
CST Microwave Studio. The coordinates are fixed with the horn under test.
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Fig. 10. Directivity for both horns

agreement with the measured data, examples are given in
figure 3 and 4. For the smooth-walled horn we have additional
results calculated with mode matching by C. Granet. These
data correspond also well with the measurements.

Because the two horns have different center frequencies (see
table I) a comparison of both horns is done with simulated data
at the center frequencies (figure 5-7). The beam width of both
horns is comparable, the side lobe level of the smooth-walled
horn is at an angle of 40 deg approx. 10 dB higher than at the
corrugated horn. Also the cross polarization level is higher
(5 - 10 dB) at the smooth-walled horn. The main criterion for
the phase is, that it is flat over an angle as large as possible,
because this will simplify to design the optical components
like mirrors etc.. This claim is satisfied by the smooth-walled
horn very well. In addition, it is of advantage if the phase
center lies in the same position over the frequency range. The
phase center is calculated in Microwave Studio. It is used the
phase of the phi or theta component of the electric field and
the calculation is limited by an angle of 50 degrees around the
main lobe. The phase center is calculated from phase values
in E-Plane. To compare this data with the measurement, the
measured phase is fitted to the simulated data by

∆Φ = 2π
∆z

λ
(1 − cos Θ) (4)

with the axial offset ∆z � z [11]. At the smooth-walled
horn is the variation of the phase center position comparable
with the corrugated horn. In figure 8 is shown, that the drift
in the phase center is comparable for both horns. The plot
shows also some measured points, of which the accuracy is
limited by the mounting of the horns, that is not more exact
than 1 mm. In addition the directivity (simulated in Microwave
Studio) is evaluated. The directivity of an antenna is defined as
the ratio of the radition intensity in a given direction from the
antenna to the radiation intensity averaged over all directions.
At this the radiation intensity is given by the power radiated
per unit solid angle P (Θ, φ) by the antenna divided by the
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total radiated power Ptotal:

D(Θ, φ) = 4π · P (Θ, φ)
Ptotal

(5)

The directivity (figure 10) for the smooth-walled horn is 1
to 1.5 dBi less than for the corrugated horn. This is a design
parameter, therefore it is possible to optimize a smooth-walled
horn for this requirement for a dedicated application.

IV. CONCLUSION

High quality phase and amplitude measurements of a HIFI
Band 2 corrugated horn and a novel smooth-walled horn
are presented. The data are compared to mode matching
calculations and to full 3D electromagnetic simulations. Data
and simulations are in excellent agreement. The 3D simulation
is used to compare the smooth-walled horn and the corrugated
horn. Their performance is comparable. The easier machining
of the smooth-walled horn is bought at the expense of a
little smaller directivity. The phase flatness is similar. Smooth-
walled horns are a good choice to replace corrugated horns,
especially for applications in the THz range; because they are
much easier to manufacture with standard technique.
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