
Low Loss THz Window
Armin Wagner-Gentner, K. Jacobs, U.U. Graf, and D. Rabanus

KOSMA, 1.Physikalisches Institut
University of Cologne, Germany
Email: wagner@ph1.uni-koeln.de

Abstract— This paper presents a method how to manufacture
a low loss window applicable for THz frequencies. The window
is made out of high resistivity silicon (3kΩcm, n = 3.42 and α =
0.1/cm). Reflective loss due to the impedance mismatch between
the substrate and free space is overcome by etching (Bosch-
process) rectangular grooves of depthλ/4 into the substrate as
an antireflection (AR) layer. Simulation of the AR-layer was done
by using a transmission line analogue and theScatter-program
written by R. Padman. FTS measurements yield a transmittance
greater than 96% at 2.1 THz and a bandwitdh of 400 GHz (1.9-
2.3THz) with 90% transmission.

I. I NTRODUCTION

In the THz range, standard polymer windows (e.g. HDPE,
Mylar) have high absorption. Conversely, substrates trans-
mitting THz radiation (e.g. quartz, silicon, germanium) have
extremely high dielectric constants. For these materials, AR-
coatings are needed to minimize reflection losses. This can
be done by coating both window surfaces with a material
of thicknessλ/4 and refractive indexnAR =

√
n. Coatings

with the required dielectric constants are very rare. Unfor-
tunately, most of them have poor transparency in the THz
frequency range (e.g. PE, Parylene, Teflon) leading to high
absorption losses. Precisely manufactured HDPE windows are
only slightly worse than a Parylene coated silicon window
(for example) in the THz range (1). In addition, AR-coatings
are not always easily applicable to the window substrate.
Especially in the case of cryogenic temperatures, glued or
sintered materials may peal off under temperature cycling. Fig.
1 gives an overview of appropriate THz window designs.

A second method to match the impedance of the window
material to free space is to design artificial dielectrics with a
refractive index of

√
n by cutting a well defined topology of

λ/4 depth into the substrate. The generated dielectric constant
is a function of the filling factor and can be calculated. Theo-
ries for 1D structures like rectangular-, multistep-, triangular-
and sin-wave-grooves [1][2] and 2D structures like rectangles
and holes [3]. are known. For wavelengths up to 400 GHz,
grooved HDPE can be fabricated with common manufacturing
techniques such as CNC milling. However, the needed sub-
wavelength structures of about 6 microns at 1.9 THz are quite
difficult to manufacture conventionally.

Rectangular grooves were manufactured into high resistivity
silicon by using the Bosch-process to keep the fabrication
process simple and to get high transmission at THz frequen-
cies.

Fig. 1. (1) Theoretical transmission of PTFE glued on z-cut crystal
quartz: 25µm PTFE, 5µm Epo-Tek-301, 500µm quartz, 5µm Epo-Tek-
301 and 25µm PTFE. (2) Calculation for Parylene coated silicon: 24.38µm
Parylene, 527µm silicon and 24.38µm Parylene. (3) Measured (FTS - Bruker)
transmsission of 1.29mm HDPE. (4) Simulated data of 90µm Mylar.

II. T HEORY

Theories to calculate 1D or 2D AR-structures are given by
[1][2] and [3]. In both cases, the topology models the dielectric
constant of the substrate, thus artificial dielectrics can be
designed. It should be noted, that 1D structures are polarisation
dependent and birefringent [4], whereas 2D structures are not.

Raguin et al.[1] developed the 2nd order effective medium
theory (EMT), which allows the calculation of the dielectric
constant of rectangular grooves as a function of the filling
factor f = b/p (see Fig. 2). The groove geometry is defined
as shown in Fig. 3.

The groove depthd equals a quarter wavelength of the
incident wave (λ0) in the window material:

d =
λ0

4
√

ns
(1)

The grating equation sets an upper bound on the period-to-
wavelength ratio, since the 2nd order EMT is only valid as
long as only the zeroth diffraction order propagates:

p

λ0
≤ 1

β(ns + ni)
(2)
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Fig. 2. Dependency between the filling factor and the resulting refractive
index for an incident TE and TM wave. For calculation ofn(f) see [1]

Fig. 3. Rectangular grooves as an example of a polarization dependent 1D-
structure matching the impedance of the substrate with refractive indexns to
free space (ni). Groove pitchp, depthd and tooth widthb. The incident wave
propagates ink-direction with rotation angleµ with respect to the groove pitch
vector.

The design constantβ, describes how much smaller the
ratio p/λ0 is than the critical value1/(ns + ni). For ease
of manufacturingβ should be close to unity. Values ofβ less
than unity allow the propagation of higher diffraction orders,
hence 2nd order EMT fails.

III. S IMULATION

Simulation of the artificial dielectric is possible by using a
simple transmission line analogue (Fig. 4), as long asβ ≥ 1
for any wavelength in a given frequency range, angleµ = 0◦

and thek-vector is perpendicular to the surface.
The transmission line method can not be properly used when

β drops below1 in the analyzed frequency band, because
higher-order diffraction waves start to propagate. In this case
the transmissivity should be calculated by solving Maxwell’s
Equations. Here, the FORTRAN-CodeScatter, written by R.
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Fig. 4. Transmission line

Fig. 5. Simulation of a grooved silicon (n = 3.42) window. Design frequency
1.9THz (λ0 = 158µm). Scatter: β1 = 1, i.e p = 35.5µm, b = 6.5µm and
d = 21µm and β10 = 10, i.e. p = 3.6µm, b = 0.8µm and d = 21µm.
The maximum error using the transmission line analogue is only 2% within
the band pass of 90% transmission.

Padman [5], is used. But a comparison of both simulation
methods for a 1.9THz window shows, that the error introduced
by the transmission line model is small forβ < 1. At
2.075THz the error is only 1%, accompanied by a 10GHz
frequency shift of the extremum (see Fig. 5). The error is a
consequence of Eq. 2, since for the given period-to-wavelength
ratio at 1.9THz,β drops under unity for frequencies greater
than 1.9THz. At 2.075THzβ decreases to≈ 0.93. Identical
simulation results are achievable if (for example)β ≥ 10 at
the design frequency.

The Scatter program also allows the computation of the
transmission for different angles,µ. But as can be seen in Fig.
6, the groove orientation with respect to the E-field vector is
not critical. Misalignment of5◦ yields 3% loss only.

Much more critical is the groove depth. Taking Eq. 1
into account, one can see that the frequency of maximum
transmission at a design frequency of 1.9THz is shifted by
≈ 80GHz perµm depth variation.

IV. D ESIGN CONSTRAINTS

The KOSMA single pixel 1.9THz heterodyne HEB-receiver
channel on GREAT, operated on the SOFIA airborne obser-
vatory, needs a low loss THz window, because observation
time on the stratospheric telescope is expensive. Loss from
the cryostat window should be as low as possible, no more
than 10%. Due to safety reasons the window must support a
pressure load of 3.5bar with a clear aperture of 25mm.

V. M EASUREMENTS

First, a stress analysis of a fixed mounted 527µm thick
silicon wafer under a pressure load of 3.5bar at a clear aperture
of 25mm was made. A subsequent single burst test approved
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Fig. 6. Loss due to misalignment of the grooves with respect to the
polarization vector of the incident wave (3% loss for5◦ only!). Scatter
simulation data withβ1 = 1, i.e p = 35.5µm, b = 6.5µm andd = 21µm.

Fig. 7. FTS measurements yield a refractive index ofn = 3.42 and an
absorption of0.1/cm for 3kΩcm silicon.

the preceding calculations and yielded a possible pressure load
greater than 4bar.

In a next step, the refractive index and the absorption of
high resistivity silicon was measured by using a Bruker FTS
(see Fig. 7). The values obtained for the refractive index and
absorption arens = 3.42 and α = 0.1/cm, appropriate
for the manufacture of a 1.9THz window with up to 98%
transmittance, when reflective loss is minimized by a lossless
AR-layer.

Based on the theory [1] a rectangular groove AR-structure
for high resistivity silicon was calculated (β = 1 at 1.9THz:
p = 35.5µm, b = 6.5µm and d = 21µm). The transmission
was simulated with theScatterprogram. Then, the grooves
were dry-etched by using the Bosch-process. The dry reactive

Fig. 8. Measured FTS data of our first dry-etched silicon cryostat window
for THz-frequencies. Theoretically predicted transmission for a structure of b
= 6m, p = 35.5m and d = 20m on 527m thick silicon is overlaid.

Fig. 9. SEM picture of our first low loss THz window. The rectangular
groove AR-structure can be seen.

ion etching process ensured the accuracy needed for the
structure (< 1µm for all dimensions) and kept the fabrication
process simple. Fig. 8 shows fitted data (p = 35.5µm, b =
6µm and d = 20µm) together with measured FTS data of
our first device. As can be seen, maximum transmittance of
more than 96% could be achieved. The 90% transmission
bandwidth was found to be 400GHz. An SEM image of the
etched grooves is shown by Fig. 9.

VI. CONCLUSION

Rectangular grooves, working as an AR-coating, were man-
ufactured into high resistivity silicon (3kΩcm, n = 3.42
and α = 0.1/cm). Silicon was used to keep the fabrication
process simple (Bosch-process) and to get high transmission
at THz frequencies. The topology was simulated by using
a transmission line analogue and R. PadmansScatter pro-
gram. Theoretical predictions and FTS measurements of our
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first 1.9THz device are shown in Fig. 8. As can be seen,
transmittance was found to be more than 96% at 2.1THz
and the bandwidth within 90% transmission was 400GHz
(1.9-2.3THz). The band pass shift to higher frequencies is a
consequence of the etched groove depth, which is difficult to
control. In addition, the etched tooth widthb is a little bit
smaller than calculated (6µm instead of6.5µm), leading to
a slightly different filling factor, hence to a smaller refractive
index nAR as needed for a perfect matching layer.

The mechanical design constraints, clear aperture of 25mm
under a pressure load of 3.5bar, are satisfied. The result of a
single burst test yields a possible pressure load greater than
4bar.
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