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Abstract— A 500 GHz heterostructure-barrier-varactor quin-
tupler has been designed and fabricated. The design consists of a
mixture of waveguide and microstrip components for impedance
matching. A InP based HBV diode is flip-chip mounted onto the
quartz circuit, where beam-leads are used for ground connections
to the waveguide block. Extensive back-side processing has been
carried out in order to create these beam-leads. The multiplier
is a frequency scaled version of a successful 100 GHz quintupler
with a conversion efficiency of 11.4%.

Index Terms— Harmonic generation, heterostructure barrier
varactor (HBV), sub-millimeter wave, multiplier, quintupler.

I. I NTRODUCTION

Frequency multipliers are commonly used in sub-millimetre
wave frequency region, due to lack of fundamental frequency
sources. The heterostructure-barrier-varactor (HBV) diode [1],
which only generates odd harmonics, is particularly suitable
for frequency multipliers. So far the HBV has mostly been
used in frequency triplers (× 3) [2]. However, recent work
has been targeted onto quintupler circuits (× 5) [3], [4], that
enables higher output frequency without cascading a number
of multipliers.

The 500 GHz quintupler circuit is based on a previously
built 100 GHz quintupler. This frequency scaled multiplier
was tested with both a GaAs based [4] and a InP based 4-
barrier HBV diode [5]. Measured frequency sweeps for these
diodes are shown in Fig. 1.

The multiplier is tuned for optimum performance at each
measurement point, and the input power is 15 dBm. A con-
version efficiency of 4.7% was obtained at an output frequency
of 102.5 GHz using a GaAs HBV. The quintupler performance
was later improved by using a InP HBV to 11.4%, at an output
frequency of 98.5 GHz with the same input power.

II. C IRCUIT OPERATION

A mixture of waveguide and microstrip elements is used to
provide the optimum diode embedding impedance. Two input
waveguide tuners are used to match the impedance for the
fundamental frequency. The required embedding impedances
for the third harmonic (idler) and the output frequency are
provided on the quartz substrate with circuit elements. How-
ever, a output waveguide back-short is added for flexibility. A
picture of the waveguide block is shown in Fig. 2.
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Fig. 1. 100 GHz quintupler measurement where the circuit is tuned for
optimum performance at each measurement point. The input power is 15
dBm and measurements for GaAs and InP based HBV are shown.
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Fig. 2. Waveguide block used for the 500 GHz quintupler, and an internal
view over the waveguide channels.
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Fig. 3. Quartz circuit with the HBV, microstrip probes and microstrip circuit components.

A short rectangular waveguide section connected to the WR-
8 input waveguide, and a transition block from the output WR-
1.6 to WR-10 waveguide mounted at the output are also shown
in the picture. The multiplier block can be spilt into two halves
and an internal view of the waveguide channels is shown at
the bottom of Fig. 2. Both the input and the output waveguide
are bended to accommodate the waveguide tuners. A narrow
channel where the circuit is placed connects the input and the
output waveguides. A close-up picture of quartz circuit placed
in the circuit waveguide channel is shown in Fig. 3.

The circuit substrate is 1.4 mm long, 180µm wide and 20
µm thick. It consists of among input and output waveguide
to microstrip probes. Two shunt connected hammerhead stubs
and a band-pass filter provide the RF ground for the fundamen-
tal and the fifth harmonic respectively. This band-pass filter
[6], which consists of a ladder-network of quarterwave shorted
stubs at the fifth harmonic, also provides the real part of the
embedding impedance for the output frequency. Beam-leads
are used to ground the quarterwave stubs to the multiplier
block, and a small amount of super-glue is used to keep the
circuit in position. The HBV diode is flip-chip soldered onto
the circuit, and the short inductive impedance lines connect-
ing the diode completes the matching. Both the embedding
impedances for the output frequency and the inductive idler
impedance are accounted for by use of microstrip components.

III. C IRCUIT FABRICATION AND INITIAL TESTING

Conventional photo-lithography is used to create the circuit
pattern. A thin seed-layer consisting of a 70Å thick chrome
layer and gold is patterned with photoresist. The circuit pattern
is plated up to an overall thickness of 1µm. Chrome was used
for the adhesive layer because of its resistance towards HF
acid which is used later for the back-side processing. The 100
µm thick quartz substrate is attached upside-down onto a Si-
carrier-wafer after the patterning process. A dicing saw is then
used to produce the beam-leads. First is the quartz substrate
lapped down to an overall thickness of 25µm as shown in
Fig. 4.

5 µm

25 µm

Fig. 4. Backside lapping of the quartz wafer to produce the beam-leads.

5 µm thick streets are then cut across the area above the
beam-leads. The wafer is after dicing wet-etched, where 5µm
quartz is removed and the beam-leads emerge. The Cr layer
is removed from the beam-leads and the circuits are separated
from the carrier wafer.

An initial test has been carried out using a Gunn at 85 GHz.
A couple of nano-watts was measured and the test set-up is
shown in Fig. 5.

Fig. 5. Measurement set-up for the initial test consisting of a gunn oscillator,
isolator, attenuator, coupler, waveguide transition and power meters.

The gunn oscillator provides 40 mW and it is connected
to the multiplier through an isolator, attenuator and a coupler.
The directional coupler is used to measure the reflected power.
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The reflected power is used to set an initial tuning position for
the input tuners. A Neil Ericksoon power meter coupled to a
waveguide transition is used to measure the output frequency.

IV. CONCLUSION

A 500 GHz quintupler has been fabricated. It consists of
backshort tuners for matching at the fundamental frequency,
and conventional microstrip elements for matching at the idler
and the output frequency. This quintupler is a frequency scaled
version of a very successful 100 GHz quintupler. The 100 GHz
quintupler obtained a conversion efficiency of 11.4% with use
of a InP HBV. Extensive backside fabrication processing has
been performed to create the beam-leads. Initial testing has
been carried out at 85 GHz with a gunn oscillator, and an
encouraging result was obtained. However, proper testing at
100 GHz input frequency with sufficient input power has to
be performed to measure at the proper operation conditions.
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