
 

  
Abstract— A terahertz Hot-Electron Bolometer (HEB) 

mixer design using device substrates based on Silicon-On-
Insulator (SOI) technology is described. This substrate 
technology allows very thin chips (6 µm) with almost arbitrary 
shape to be manufactured, so that they can be tightly fitted into 
a waveguide structure and operated at very high frequencies 
with only low risk for power leakages and resonance modes. 
The NbTiN-based bolometers are contacted by gold beam-
leads, while other beam-leads are used to hold the chip in place 
in the waveguide test fixture. The initial tests yielded an 
equivalent receiver noise temperature of 3460 K double-
sideband at a local oscillator frequency of 1.462 THz and an 
intermediate frequency of 1.4 GHz. 
 

Index Terms— Hot–Electron Bolometer, HEB, 
Superconductor, Heterodyne, Mixer, Terahertz, 
Submillimeter, Spectrometer  
 

I. INTRODUCTION 
he terahertz regime is of significant interest for the 
study of the interstellar medium and the life cycle of 
stars due to a large number of spectroscopic lines from 

species such as ionized carbon and nitrogen, carbon 
monoxide and water. The low atmospheric transmission 
requires that such studies be made from space, balloons, 
aircraft or one of a few high-altitude ground sites. The best 
concept for high-sensitivity, high-resolution spectrometers 
from about 1.4 THz up to several THz is the Hot-Electron 
Bolometer (HEB) Mixer, [1-4] which can provide low-noise 
operation with local oscillator (LO) power requirements 
below 1 µW. In order to increase the data gathering speed, 
future terahertz heterodyne spectrometers will likely use 
some form of multi-pixel focal plane array. This is 
especially important for space-borne applications, where the 
cost of observational platforms is very high.  
We are investigating the use of waveguide-based mixers for 
such arrays, using brass mixer blocks for the prototyping 
and HEB’s on very thin (6 µm) silicon chips that are 
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fabricated from commercial Silicon-On-Insulator (SOI) 
wafers. The thin silicon chips should allow operation to 
many THz without the occurrence of substrate modes and 
resonances that could be expected from thicker substrates. 
One existing technique uses lapped-down quartz substrates 
[5], but due to the fragility of these the method is unlikely to 
work well over about 2 THz. With the SOI approach, the 
device chips can be shaped almost arbitrarily so that they fit 
into the waveguide circuit, so that it is not necessary to use 
larger membranes supported by a frame, which would 
complicate the microwave design.  
 

The use of a waveguide circuit instead of an open 
structure (quasioptical) antenna, such as a twin-slot antenna 
has some advantages. For example, waveguide horn 
antennas are used, which have better antenna patterns and 
(in the case of corrugated horns) have better polarization 
properties than most planar antennas, and which eliminate 
the risk of cross-talk on the intermediate-frequency side of 
the mixer. Another advantage, and a main reason for our 
interest, is that more complex circuits can be constructed to 
for example allow the LO power to be injected separately 
from the signal into the mixer block. One of the simplest 
such configurations is the cross-bar balanced mixer, where a 
probe on the same chip as the mixer would couple the LO 
power from a separate waveguide. Since the Signal/LO 
separation is achieved by use of symmetry and 
antisymmetry, it should be possible to achieve a broadband 
mixer circuit that will not require interferometers or 
beamsplitters in the signal path. Also, a cross-bar mixer 
does not require moving parts when the local oscillator 
frequency is tuned, which is an advantage compared to for 
example a Martin-Puplett interferometer. The mentioned 
properties would be significant for future space-borne 
single-pixel mixers, but even more so for a multi-pixel array 
instrument. We are currently investigating such cross-bar 
mixers, and will report on produced results in future 
publications.  

 
Other issues with the SOI chip / waveguide approach that 

need to be resolved include the difficulties in machining the 
very small waveguide structures that will be needed at 
several THz. It is likely that silicon micromachining in some 
form will be required, for example using laser etching [6] or 
the Bosch-process Deep Reactive-Ion Etching (DRIE) 
technique [7]. The purpose of this paper is to report 
experiments with a 1.5 THz mixer based on the SOI chip / 
HEB concept, using NbTiN bolometer devices and a 
diagonal horn waveguide block machined from brass. 
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II. DEVICES 
The mixer chips are produced in-house at JPL and the 
fabrication has been described in detail in a previous 
publication [8]. The SOI technology applied is also similar 
to that described in [9,10]. Commercial Silicon-On-Insulator 
(SOI) wafers are used, which have a 6 µm thick Si layer 
bonded to a 400 µm thick oxidized “handle” wafer. In our 
wafer “front side” process the NbTiN HEB devices and 
circuits, including gold beam leads, are fabricated on this 
SOI wafer. In the ”back side” process the wafer is attached 
with wax to a separate thick Si wafer, and the handle wafer 
is removed from the Si membrane by Deep Reactive-Ion 
Etching (DRIE). The bared oxide layer is wet-etched, after 
which the 6 µm thick silicon is patterned and etched by 
DRIE to define the outline of the silicon chip. The DRIE 
does not affect the gold beam leads significantly, so that 
these can extend outside the edges of the silicon. The 
finished chips are released from the wax using a solvent and 
then strained out with a filter paper. Fig.1 shows a finished 
device chip for 1.5 THz. The NbTiN device films produced 
have a superconducting transition temperature (Tc) of about 
9.5 K and a film resistance of about 1250 ohms/square, with 
slightly lower Tc (8.5 to 9 K) for fully processed devices. 
The -3dB intermediate frequency bandwidth achieved at a 
signal frequency of 19 GHz is about 1.4 GHz (Fig. 2), see 
[8] for more details. 
 

III. WAVEGUIDE CIRCUIT 
The general approach is to fabricate superconducting HEB’s 
on shaped thin silicon substrates and to install these into a 
waveguide mixer block, taking advantage of the low losses 
and the high beam-quality of waveguide horn antennas as 
well as giving scalability to higher frequencies (waveguide 
blocks with horns have already been successfully machined 
at JPL for other applications up to 2.8 THz). The SOI 
substrate is shaped in such way that it can be installed into a 
reduced-height waveguide mixer block, and be held in place 
by clamping the protruding gold beam-leads between 
different parts of the machined mixer block. The device is 
mounted with the flat side of the chip against the end of the 
waveguide, rather in the waveguide E-plane. The primary 
reason is that the design serves as a prototype for a future 
cross-bar balanced mixer, where this configuration will 
allow local oscillator power to be coupled to the devices  
 

 
Fig. 1. An HEB/SOI chip. The I-shaped silicon substrate has 
a thickness of 6 µm, and a width at the bow-tie shaped 
waveguide probe of 50 µm. Gold beam leads are used to 
contact the chip and to hold in place in the waveguide 
circuit. The HEB is at the geometric center. 

 

 
Fig. 2. Bandwidth measurement with a NbTiN HEB, made 
as an upper sideband measurement by sweeping the LO 
frequency while keeping the signal fixed at 19 GHz. The 
LO power level was adjusted to maintain a constant LO 
pump level. 
 
from a separate waveguide with high coupling efficiencies 
for both the detection signal and local oscillator without use 
of an external interferometer. The present (non-balanced) 
mixer uses a bow-tie shaped capacitively coupled 
waveguide probe, which is RF-decoupled from the DC/IF 
lines by a quarter-wavelength section filter. Practically all of 
the circuit design was made using Ansoft’s High-Frequency 
Structure Simulator (HFSS) software. The goal was to find a 
prototype design with reasonable coupling in the 1-2 THz 
band without significant dropouts at any frequency. Initially 
such dropouts did occur, apparently due to differences 
between the field generated by the probe and the desired 
TE10 waveguide mode that lead to excitation of evanescent 
modes. It was found that this could be overcome by 
introducing notches in the waveguide probe close to the 
HEB device, as shown in Fig.3. The notches in that figure 
are 2.1 µm long 0.8 µm wide. As further seen in the figure, 
the near edge of the quarter-lambda section bandstop filter 
was given a curved shape to agree better with the field that 
was spreading radially into the substrate channel. The 
substrate channel had a depth of 10 µm on the chip side 
(towards the horn antenna) and 8 µm on the other side 
(towards the waveguide backshort). The waveguide 
backshort distance was 65 µm. Figure 4 shows the reflection 
coefficient vs. frequency for a 25 ohm device from the 
HFSS simulations, which included the entire waveguide 
circuit except for the horn antenna but which neglected 
conductor losses. As can be seen, the simulated reflection at 
1.5 THz is about -5 dB, with optimal coupling occurring at 
1.9 THz. A simulation shows that the location of the 
optimum can be shifted to 1.5 THz by slightly widening the 
part of the substrate that is inside the waveguide, but this 
was not implemented in the mask set used for devices in 
these experiments. Figure 5 shows a device chip such as the 
one in Fig. 1 installed into the substrate channel of the mixer 
block. The waveguide is the dark rectangular hole behind 
the bow-tie shaped waveguide probe at the center of the 
picture. 
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Fig. 3. Close-up schematic of the probe (true to scale). 
 
The quality of the machining of the mixer block (Fig.6) is a 
crucial factor to the feasibility the waveguide approach at 
this frequency (1.5 THz) and higher. There are several  
difficulties that must be overcome: 1) Tool breakage and 
“wobbling” sets a practical lower limit for the end-mill tool 
diameter of about 10-15 µm (a 15 µm tool has been 
successfully used at JPL for cutting a narrow channel in 
brass). 2) The cutting depths for these small tools are limited 
to just a couple to a few times the tool diameter. 3) Mating 
surfaces need to polished to very high flatness and finish to 
prevent power leakages and resonances in the circuit. 4) 
Alignment of different component parts in the block is 
critical, and is usually achieved either by machining the 
components together in the same run on the numerically 
controlled milling machine, or by visual inspection and 
alignment under a stereo microscope. The parts are usually 
pinned together with cylindrical steel pins. 5) Some 
structures cannot be implemented with just two pieces, but 
require several parts that need to be machined separately 
and then be aligned to each other, which increases 
complexity. 6) Installation of the HEB device into the block, 
which is done with micromanipulators, is difficult but 
doable. In the circuit described in this paper, the block is 
split in 3 pieces (2 parts that allow the diagonal horn 
antenna to be cut and a third part that holds the waveguide  
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Fig. 4. Simulated reflection coefficient (mismatch) between the 
waveguide and a 25 ohm detector in the 1-2 THz band. The 
waveguide cut-off frequency (TE10) is 1 THz. HFSS was used for 
the calculation. 
 

 
 
Fig. 5. A 1.5 THz HEB/SOI chip aligned to the waveguide. 
The waveguide cross-section is 150 by 50 µm. 
 
backshort and that allows the beam-leads on the chip to be 
clamped). In our case the most difficult issue above is 
number 4, the alignment of parts. The described mixer block 
required a visual alignment step where the backshort 
component was lined up and pinned using microscope 
observations through the horn antenna, eventually resulting 
in an alignment error of less than 2 µm. The conclusion 
from the successful production of this 1.5 THz block was 
that the techniques involved can likely be extended in 
frequency up to about 3 THz, but probably not much higher. 
It is clear that a different technique such as silicon 
micromachining will eventually be required.  
 

IV. EXPERIMENTS 
The mixer testing was done in a setup using a 4.2 K vacuum 
cryostat with two different solid-state Schottky diode 
multipliers as local oscillator sources. The purpose was to 
show that the coupling efficiency of the structure is high 
enough to pump the HEB device with such sources, and to 
do a receiver noise calibration measurement.  The device 
used was a 0.3 µm long and 6 µm wide NbTiN HEB with a 
room temperature resistance of 58 ohms. A pumping 
experiment was made with a Gunn diode / power amplifier 
driven multiplier chain at 1.52 THz. The source output was  
 

 
Fig. 6. 1.5 THz mixer test block. The aperture of the 
diagonal horn antenna is the diamond-shaped hole in the 
cylindrical cutout on the front side. The entire block is about 
1 inch wide. 
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Fig. 7. An unpumped DC IV curve at together with one 
pumped at 1.5 THz by a JPL solid-state multiplier source. 
The temperature is 4.2 K. 
 
measured to be about 2-3 µW with a calorimeter. The 
divergent beam from the source was collimated and 
refocused onto the mixer horn by two 1-inch diameter off-
axis paraboloid mirrors. As can be seen in Fig.7, the device 
could clearly be pumped by this source, although in this 
case the power was coupled directly to the mixer block 
without a beamsplitter or interferometer, which is required 
for a mixer measurement in the present un-balanced 
configuration. A different, more powerful multiplier [11] 
source that produced 11µW (by calorimeter) was used in a 
subsequent measurement to allow the use of a 50 µm thick 
Mylar beamsplitter (at 45 degrees angle to the beams with 
the polarization perpendicular to the plane of reflection). 
The measurement was made at an LO frequency of 1.462 
THz, and with an L-band HEMT amplifier at 1.4 GHz that 
had an equivalent input noise temperature of 2.3 K.  
 

D 41,42

10
DC Voltage (mV)

0
0

0

200

D
C

 C
ur

re
nt

 (µ
A)

IF
 O

ut
pu

t P
ow

er
 (a

rb
. U

ni
ts

)

 
Fig. 8. An LO-pumped IV curve (1.462 THz) together with 
the detected IF output power at 1.4 GHz. The two power 
curves were measured with calibration loads at 293 K and 
77 K, respectively. The vertical line marks the largest Y-
factor response, corresponding to an equivalent noise 
temperature of 3460 K DSB. 
 

A separate Anritsu bias tee was used to DC bias the device. 
The highest Y-factor that was measured was 1.061 with 
calibration target temperatures of 77 K and 293 K, which 
gives an equivalent noise temperature of 3460 K double-
sideband (DSB), see Fig.8 . We believe that this initial 
number can be improved by modifications of the optical 
setup such as using an interferometer in place of the 
beamsplitter, and by using lower-impedance devices that are 
better matched to the circuit. Also, a modest redesign of the 
circuit to shift the frequency of best (theoretical) coupling 
from 1.9 THz to 1.5 THz should contribute to lower input 
noise. 
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