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Abstract—An advantage of superconducting detectors is a 

much lower noise in comparison to their semiconductor 
counterparts. We have studied the magnitude and spectrum of 
electric noise in thin superconducting NbN nanostrips carrying 
a subcritical current. Analysis of the experimental data suggests 
that the noise appears due to fluctuations in the two-
dimensional vortex gas below the Kosterlitz-Thouless phase 
transition. Implementing this approach to the noise mechanism, 
we proposed a novel detector. The novelty is the use of the noise, 
which generally hampers the performance of conventional 
detectors, as the physical quantity that itself senses radiation. 
Our detector patterned from a thin NbN superconducting film 
and integrated in a planar log-periodic antenna. The detector 
operates at 4.2 K in the current-carrying superconducting state.  
Optically measured noise-equivalent power amounted at 10-13 
W / Hz1/2 and is likely to improve at lower temperatures.  
 

Index Terms—Noise in superconductors, nonequilibrium 
superconductivity,  Superconducting terahertz and 
submillimeter wave detectors. 
 

I. INTRODUCTION 

HERE have been several superconductor detector 
technologies for THz-frequency range successively 

developed during the last decade. Transition edge 
microbolometers [1] working at millikelvin temperatures 
provide a lowest noise equivalent power (NEP) of 10-18 
W/Hz1/2 along with the 100-millisecond time constant. Hot-
electron detectors [2], although less sensitive, are much faster 
since their response is controlled by electron-phonon 
interaction. The strength of this interaction and, 
consequently, the response time, can be varied [3] via 
controllable disorder. Superconducting kinetic inductance 
detectors [4] are supposed to achieve background limited NEP 
if they would operate at a very low temperature with a low-
noise SQUID pre-amplifier. Superconductor-Insulator-
Superconductor (SIS) and Normal (metal)-Insulator-
Superconductor (NIS) direct detectors have been also 
proposed. A noise equivalent power of 10-15 W/Hz1/2 at 4 K 
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[5] and 10-17-10-18 W/Hz-1/2 at 100 mK [6] was estimated for 
SIS and NIS direct detectors, respectively. For all these 
sensors, an electrical noise of any type hampers the ability of 
a sensor to detect radiation. In an ideal detector, fluctuations 
of the background radiation dominate over other noise 
sources. In practice, the detector itself and a pre-amplifier 
generate at least a part of the noise. A concept of the noise 
bolometer has been recently proposed [7] in that a detector 
senses radiation via radiation induced changes of its own 
electrical noise. Somewhat analogous, a temperature 
dependence of the fundamental Johnson noise has been used 
[8] for thermometry.  

In this paper we present experimental evaluation of a noise 
bolometer and estimate its ultimate performance. 

 

II. DETECTOR DESIGN AND EXPERIMENT 

The detector is a 80 nm wide meander line made from a 5 
nm thin superconducting NbN film (as shown in Fig. 1). It 
operates deep in the superconducting state and carries a 
supercurrent slightly less than the critical current. Radiation 
couples with the detector via an immersion lens and a planar 
log-periodic antenna, which jointly define the useful spectral 
range from 1 to 5 THz. The current RF noise was recorded at 
a frequency of 3 GHz in a hundred megahertz band. The 
noise equivalent power was evaluated for the signal produced 
by alternating  thermal loads (300 & 77 K) at the detector 
input. At an ambient temperature of 4.2 K measured noise-
equivalent power amounted at ≈ 10-13 W/Hz1/2 while a time- 
constant of approximately 250 ps was anticipated.  
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Fig. 1.  Microphotograph of the NbN meander line incorporated into the planar 
log-periodic antenna.  
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Fig. 2.  RF noise (squares) and the signal (triangles) as function of the bias 
current. Both measured at 4 K.   
 
 

 The sensitivity of the detector is limited by statistical 
variations of the noise power. Assuming that the time 
variations of the spectral power density are totally 
uncorrelated, the dispersion of the noise power can be found 
with the radiometric equation as δPω ≈ Pω(B t0)

-1/2 where Pω is 
the mean value, t0 is the integration time and B the 
bandwidth. The noise equivalent power for the detector is 
then NEP =  δPω/(dPω/dW) where W denotes the radiation 
power at the detector input. Fig 2 shows the signal due to 
alternating hot/cold load and the mean RF noise power as 
function of the bias current. Both the signal and the noise 
demonstrate similar variation resulting in a practically 
frequency independent noise equivalent power.  
 

III. NOISE APPEARANCE & M ECHANISMS 

Noise of a superconducting current-biased meander appears 
as a sequence of random voltage pulses. When measured with 
a broad-band microwave amplifiers in series with a band-pass 
filter, it causes additional microwave power. If measured with 
an integrating low frequency voltmeter, the noise causes a 
non-zero dc voltage over  the nominally superconducting 
structure. The shape of the superconducting transition and the 
current and temperature dependence of the noise pulse rate in 
our meanders are best understood when fluctuations in the 
gas of magnetic vortices are taken into account [9]. Below the 
two-dimensional Kosterlitz-Thouless transition, almost all 
vortices are bundled into vortex-antivortex pairs. The binding 
energy of a pair depends on its orientation with respect to the 
current and has a current dependent minimum value EVP. The 
process of unbinding can be seen as a thermal excitation 
across this energy. Free partners of a vortex-antivortex pair 
are driven apart by the Lorentz force FL exerted by the bias 
current (Fig. 3). Vortex motion (even over a distance smaller 
than the strip width) produces a change in the 
superconducting phase difference between the strip ends and, 
consequently, a voltage pulse. The rate of these events is 
proportional to the thermodynamic probability of pair  

 
 
Fig. 3.  Schematics of the current-induced unbinding of a vortex-antivortex pair. 
Unbinding force peaks when the pair is oriented normal to the current. 
 
 

unbinding and depends on the fractional bias current I/IC and 
material parameters A as  

 
 
 
 

It has been shown in [7] that, due to an exponential 
temperature dependence of the recombination time, NEP of 
the detector using this noise mechanism should scale as 
T exp(∆/kB T). Estimates for our NbN detector show that NEP 
can reach 10-18 W⋅Hz-1/2 at 0.3 K. Preliminary data on the 
temperature dependence of the noise support the expectations.  
 

IV. CONCLUSION 

In comparison to relatively slow low temperature detectors, 
an obvious benefit of our detector approach is that the 1/f 
noise is not present in the high-frequency readout. Another 
practical advantage of the use of the current noise is that it 
dramatically increases with the bias current making it 
possible to substitute a complicated SQUID readout with less 
sensitive and cheaper microwave amplifiers. 
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