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Millimeter-to-submillimeter-wave radiation can couple to a very high mobility 

(106 to 107 cm2/V·s at 4 K) electron gas in a III-V semiconductor heterostructure 
interface or quantum well in two distinct manners that are both useful in detection and 
mixing applications.  The first and more conventional response is based simply on 
electron drift, while the second response is for the radiation to resonantly excite 
coherent charge density oscillations, or plasmon modes, of the electron gas.  We will 
show examples and contrast the fundamental limitations on frequency response and 
mixing characteristics resulting from the different physics of the two responses.   

We have shown1 that hot-electron bolometer (HEB) mixers made from a high-
mobility two-dimensional electron gas (2DEG) can enter a regime where neither 
energy nor momentum relaxes in a channel between source and drain electrodes, 
leading to ballistic electron drift.  For a source-drain channel of length L, this 
minimizes the charge transit time τtr and hence maximizes the intermediate frequency 
(IF) bandwidth to f3dB = vF/2πL, where vF, the Fermi velocity, is typically ~ 107 cm/s 
in a 2DEG.  Even for L > 1 µm, IF bandwidths approaching 40 GHz have been 
observed.  The IF spectrum of such an HEB mixer has very low harmonic distortion, 
as expected for the square-law non-linearity of a bolometer, while the responsivity 
and conversion gain are generally low, owing to the small temperature coefficient of 
resistance of the high-mobility 2DEG.  In addition, in the ballistic electron drift 
regime the 2DEG has kinetic inductance that will degrade coupling to the 
electromagnetic field as local oscillator (LO) frequency increases.  We estimate that, 
for practical antenna/mixer geometries and electron densities, the inductive reactance 
will set an upper limit on LO frequency coupling of roughly 500 GHz. 

By contrast, the plasmon response we have observed is resonant and not limited 
by kinetic inductance.  Using a grating-gated field-effect transistor geometry, resonant 
plasmon response has been observed from 135 to nearly 700 GHz in various devices.2  
In a single device, the resonant frequency of the response can be tuned continuously 
over a ~ 200 GHz range by an applied gate voltage bias.  Heterodyne experiments 
show that, unlike an electron-drift device, the IF bandwidth of this detector operated 
as a mixer is not limited by the plasmon transit time, but more likely by the plasmon 
lifetime.  The measured IF bandwidth of approximately 8 GHz is in rough agreement 
with the half-width of the observed plasmon resonance peak.  The IF spectrum of the 
plasmon mixer also shows significant harmonic content, indicating that the non-linear 
mechanism generating the IF is significantly more complicated than a simple square-
law.3  We are also investigating plasmon detector configurations that could 
significantly improve responsivity and conversion gain. 
                                                
1Mark Lee, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 81, 1243 (2002) 
2X. G. Peralta, et al., Appl. Phys. Lett. 81, 1627 (2002) 
3Mark Lee, M. C. Wanke, and J. L. Reno, Appl. Phys. Lett 86, 033501 (2005) 
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