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Abstract— We report on the fabrication at the Jet Propul-
sion Laboratory of a fixed-tuned split-block waveguide bal-
anced frequency tripler working in the 260-340 GHz band.
This tripler will be the first stage of a x3x3 x3 multiplier chain
to 2.7 THz (the last stages of which are being fabricated at
JPL) and is therefore optimized for high power operation. The
multiplier features six GaAs Schottky planar diodes in a bal-
anced configuration integrated on a few gm-thick membrane.
Special attention was put on splitting the input power as evenly
as possible among the diodes in order to ensure that no diode is
over-driven.. Preliminary RF tests indicate that the multiplier
covers the expected bandwidth and that the efficiency is in the
range 1.5-7.5 % with 100 mW of input power.

Index Terms— Local oscillator, varactor, planar diode,
Schottky diode, frequency multiplier, frequency tripler, bal-
anced iripler, submillimeter wavelengths.

I. INTRODUCTION

Frequency multiplication offers the possibility to create
tunerless compact frequency-agile terahertz sources working
at room temperature that are well-suited to pump Hot Elec-
tron Bolometer (HEB) mixers [1],[2]. Nevertheless, there
has been no demonstration of a fully solid-state local oscilla-
tor at frequencies above 1.95 THz. This limitation is due in
part to the lack of drive power in the 600-1200 GHz range,
which can in turn be traced to the power available in the
200-400 GHz range. The purpose of the current work is to
create a wideband 300 GHz source with sufficient output
power to be used as a first stage of a x3 x3 x3 chain to
2.7 THz.

II. DESIGN & FABRICATION

A preliminary design of the balanced 260-340 GHz tripler
along with the predicted performance have been presented
in [3]. The tripler is a split-block waveguide design that fea-
tures six Schottky planar varactor diodes, monolithically
fabricated on a ---5 gm-thick GaAs membrane. The chip is
mounted in a channel that runs between the input and the
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Fig. 1. 3D view of the bottom part of the waveguide block (partial view)
with the 300 GHz tripler chip. The device is fabricated on a 5 pm thick
GaAs membrane substrate. It features six Schottky diodes in a balanced
configuration. The total length of the device is about 1 mm.

Fig. 2. 3D view of the entire 260-340 GHz frequency tripler. The total
length of the matching circuit in the input waveguide is about 14 mm. The
total length of the circuit is 20 mm.

An E-plane probe located in the input waveguide couples
the signal at the fundamental frequency to a suspended mi-
crostrip line. This line has several sections of low and high
impedance used to match the diodes at the input and output
frequencies and to prevent the third harmonic from leaking
into the input waveguide. The third harmonic produced by
the diodes is coupled to the output waveguide by a second
E-plane probe. The bandwidth of the multiplier was ex-
tended by adding to the input waveguide a succession of
sections of high and low impedances [3]. With respect to the
design presented earlier, the current design uses exactly the
same device, but the waveguide input matching network has
been slightly modified and the step in the output waveguide
has been removed. The predicted performance of the final
circuit are very similar to those published in [3].

Fig.1 shows a schematic of the 260-340 GHz tripler chip
while Fig. 2 shows a schematic of the entire multiplier.
Fig. 3 shows two pictures of a tested multiplier. Note that
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the output probe on this particular chip is defective: it is
only 50 gm long instead of 90 gm. At the time this paper
was written, this was the only device available for testing.

Fig. 3. Photograph of the bottom part of the waveguide block with a
300 GHz tripler chip and the DC capacitor installed (top). Detail of the 260-
340 GHz tripler chip (bottom). NOTE that the output probe on this particu-
tar chip is defective: it is only 50 um long instead of 90 1.1.111 (compare with
the 3D schematic of Fig. 1).

III. PRELIMINARY MEASUREMENTS

The output power of the 260-340 GHz tripler was meas-
ured at room temperature using an Erickson Instruments
PM3 power meter [4] and a one-inch long WR10 to WR3
waveguide transition. No corrections were made for the
losses in the waveguide transition. Fig. 4 shows the output
power and the conversion efficiency across the band while
keeping the input power at 100 mW (except near the edges
of the band). The bias was optimized for each frequency
point. Despite the defective output probe, this multiplier
shows excellent performance and covers the entire band
260-330 GHz band. Due to limitations of the W-band drive
source, no measurements were made above 330 GHz, so it is
not clear if the multiplier does actually reach 340 GHz as
predicted.

The efficiency of the multiplier as a function of the input
power was measured at room temperature by varying the
input power from 3 mW (+4.8 dBm) to 192 mW (+22.8 dB)
while optimizing the bias at each input power level (see
Fig. 5). The output frequency was fixed at 318 GHz where
the efficiency was close to the maximum and where almost
200 mW of drive power was available. Fig. 5 shows that the
efficiency saturates at relatively low input power (+9 dBm =
8 mW) and decreases with the increasing input power above
+9 dBm. This decrease of the efficiency becomes more no-
ticeable for input power levels above +17 dBm (50 mW).
This may indicate that the diodes are overheating due to the
thin substrate under the diodes. No thermal study has been
performed yet to verify this hypothesis.

Simulations were performed to estimate the impact of the
flawed output probe (see Fig. 6). The 3D structure of the
actual multiplier was re-simulated with a finite-element EM-
solver (Ansoft HFSS V10.1). Fig. 6 shows the predicted
performance of the defective chip biased with the same DC
voltage and pumped with the same input power as the meas-
urements. The results of this simulation are compared to the
measurements in Fig. 6. The difference between measure-
ments and predictions is in the range -3.2 dB to -1.2 dB (ex-
cluding a relatively narrow resonance around 300 GHz). It is
important to note that these simulations where performed
with the same set of parameters (series resistance, intrinsic
junction capacitance, metallic losses, etc.) as the one used
for the optimization of the circuit [3]. No retro-fit has been
made. Since only one chip has been tested, it is impossible
to say at this point if the initial predicted efficiency will be
matched with a better chip, but it does appear likely that the
predicted bandwidth will be achieved.

Fig. 6 also shows the predicted performance of the multi-
plier with a normal chip when pumped with a flat input
power of 100 mW and when biased with a voltage of -13V.
The same simulation is performed by replacing the normal
chip by the defective chip. These simulations indicate that
the performance of the multiplier should improve noticeably
when a non-defective chip is mounted into the waveguide
block. An increase of at least +3dB with respect to the
measurements is expected for the lowest frequencies while
an increase of at least +1d13 is expected at the high end of
the band.

IV. CONCLUSION

The preliminary results presented in this paper show that
Schottky frequency triplers operating at 300 GHz can have
both wide electronically-tunable bandwidth and high con-
version efficiency. On-going research at the Jet Propulsion
Laboratory in collaboration with the Universite Pierre et
Marie Curie-Paris 6 and the Observatoire de Paris focuses
now on power-handling and power combining to increase
the power produced at 300 GHz.

234



17th International Symposium on Space Terahertz Technology

Frequency Sweep, Optimized Bias
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Fig. 4. Frequency sweep across the 260-330 GHz band. Input power is kept constant except at the edge of the band due to the roll-off of the W-band power
amplifiers used for the measurements.

Input Power Sweep at 318 GHz , Optimized Bias
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Fig. 5. Power sweep at the output frequency of 318 GHz. The bias is optimized for each input power level.
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Fig. 6. Simulated efficiency versus frequency compared to the measured efficiency of the 260-340 GHz tripler.
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Measurements vs. Simulations at Room Temperature
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