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 Abstract—In this article we present the design, modeling and 

construction of a side-band-separating (2SB) heterodyne receiver 
for the frequency range from 600 to 720 GHz that corresponds to 
band 9 band of ALMA. The characteristics of this receiver 
present a significant improvement over the current double-side-
band (DSB) configuration currently under development. The 
core of the mixer consists of a quadrature hybrid, two LO 
injectors, two superconductor-insulator-superconductor (SIS) 
junctions, three signal-termination loads, and two IF filtering 
systems. All these parts were modeled and optimized prior 
construction. Our 2 mixer exploits waveguide technology and has 
been constructed in the split-block technique. We used state-of-
the-art CNC micromachining which permitted us to obtain the 
small dimensions required for this frequency range. The 
constructed receiver presents a good performance but we suggest 
various ideas for further improvement. 
 

Index Terms— Astronomy, submillimeter wave mixers, 
superconductor-insulator-superconductor devices. 

I. INTRODUCTION 
HE Atacama Large Millimeter Array (ALMA) is the 
largest radio astronomical enterprise ever proposed. 

Currently, it is under construction and it is expected to be 
operational by 2012 [1] Each of its constituting antennas will 
be able to hold 10 heterodyne receivers covering the 
spectroscopical windows allowed by the atmospheric 
transmission at the construction site, the altiplanos of the 
northern Chilean Andes. In contrast to the side-band-
separating (2SB) receivers being developed at low 
frequencies, double-side-band (DSB) receivers are being 
developed for the highest two spectroscopical windows (bands 
9 and 10). Despite of the well known advantages of 2SB 
receivers, they have not been implemented at the highest-
frequency bands as the involved dimensions for some of the 

RF components are prohibitory small. However, the current 
state-of-the-art micromachining technology has proved that 
the complicated structures necessary for this development are 
attainable [2]. Here we report the design, modeling, 
realization, and characterization of a 2SB mixer for band 9 of 
ALMA. The performance is excellent and satisfies the ALMA 
specifications. However, further improvement can be 
achieved. 

Fig. 1.  Scheme of the chosen configuration for our 2SB mixer. 
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II. DESIGN AND MODELING 
From a variety of possible 2SB schemes, we have selected 

the configuration shown in Fig. 1. A 90° hybrid has been 
selected over its 180° counterpart despite of the superior 
fundamental and intermodulation product suppression 
capabilities of the latter. This is justified as the intrinsic 
parasitic capacitance of SIS junctions naturally suppresses 
intermodulation products and higher harmonics. Moreover, a 
90° hybrid is simpler and, thus, easier to implement at these 
high frequencies [3].  

We have opted for waveguide technology for the 
construction of the RF components and planar stripline for the 
IF filtering and matching parts. The current design follows 
previous work proposed for the balanced and correlation 
receivers at CSO [3]. Each one the RF components and the 
planar IF system (Figures 2 and 3) were modeled 
independently using commercial microwave-analysis software 
[4].  The dimensions of every RF component were selected for 
an optimal performance in the 600−720 GHz range. On the 
other hand, the IF signal is intended to cover 4−8 GHz. 

T 
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A. RF components 
In Fig. 3 we show the proposed concepts for the different 

RF components. The design of the power divider, LO 

injectors, and quadrature hybrid are based on a narrow 
bandwidth split block version developed for the ALMA 
project at lower frequencies [5]. However, at variance with 
that previous work, the waveguide width (b-dimension) of the 
present hybrid and the LO injectors has been increased by a 
32.5% to maximize the thickness of the branch lines (Fig. 2) 
[3]. Every one of these components was simulated and 
optimized using commercial software. The results, 
summarized in Fig. 4a, show a rather flat response of the 
devices in our frequency window. 

Although several configurations have been proposed for the 
signal termination loads [5]–[6], we have selected a rather 
novel and simple configuration which is appropriate for the 
small dimensions involved in the present work. The design, 
presented in Fig. 2(b), consists of a cavity at the end of the 
waveguide partially filled with an absorbing material. The 
geometry we are presenting here is relatively easy to make as 
the largest dimension is designed parallel to the splitting plane 
of the block. Extensive simulations of this configuration have 
been presented elsewhere [7]. The loads show a good 
performance, as demonstrated by the reflection coefficient 
[Fig. 4(b)], if Eccosorb MF112 [8] is used as absorbing 

 

 

 
Fig. 2.  Design of the various RF components: (a) Core of the 2SB mixer. (b) 
Signal termination load. (c) Waveguide to microstrip transition.  The 
transversal dimensions of the waveguide are 145× 310 mm2. 

Fig. 4.  Results of the electromagnetic modeling of the different RF 
components: (a) S-parameters between the input and output of the the 90° 
hybrid, LO splitter, and LO injector as designed, solid lines, and as 
constructed, dashed lines. (b) Reflection coefficient of the signal termination 
load. (c) Coupling efficiency and return loss of the waveguide-microstrip 
transition. 

 
Fig. 3.  IF configuration. The dashed line shows the positioning of a cutout 
bellow the substrate needed for the 3-9 GHZ band pass filter. 
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Fig. 5.  Calculated sideband ratio assuming a perfect IF hybrid (light gray 
line) and with a amplitude and phase imbalances of 0.25 dB and 3° (gray 
line), and 1 dB and 5° (black line). 

Fig. 7. Calculated transmission between the input and output ports of the IF 
structure presented in Fig. 3. 

material. When the cavity is terminated at the point where the 
wedged part ends, large resonances appear. They can be easily 
damped by adding extra absorbing material. Moreover, it has 
also been shown [7] that this approach is pretty robust as 
various possible mounting errors have little influence in the 
overall performance. 

Fig. 6.  Calculated and measured response of the fabricated SIS junctions. 
The response was measured through the RF port. 

 We use a full height waveguide-to-microstrip transition to 
couple the incoming signal to the thin-film tuning structure of 
the SIS junction. The proposed structure is shown in Fig. 2(c). 
We have opted for a configuration that crosses the waveguide 
but in this case care must be taken in the way the DC bias 
return line meanders across the waveguide as this structure is 
prone to setup modal resonances. Therefore, we selected a 
design similar to the one proposed by Risacher et al. [9]. An 
important modification is that we have added a capacitive step 
in front of the radial probe as it improves the overall 
performance [10]. For the RF choke we selected the popular 
"rectangular" structure. The calculated coupling efficiency and 
return loss, between the waveguide and the tip of the radial 
probe, are presented in Fig. 4(c).  

Given the calculated S-matrices of the different RF 
components, we used an S-matrix circuit simulator to 
calculate the sideband ratio of the complete RF core. The 

results are given in Fig. 5. If a perfect IF hybrid is assumed, 
which will set the upper limit, a sideband ratio above 20 dB is 
expected across the whole band. However, the characteristics 
of the IF hybrid are far from ideal. We, therefore, have 
repeated the calculations assuming some amplitude and phase 
imbalance which will lower the 2SB performance. 

 

 

 
Fig. 8.  Constructed 2SB block and its different components: (a) Closed 2SB 
block. (b) Upper half. (c) Close-up of the RF components. 

18th International Symposium on Space Terahertz Technology 

41



 

B. SIS junction and tuning structure 
Based in our successful experience with the development of 

DSB receivers for band 9 of ALMA, we have opted for a 
single Nb/AlOx/Nb junction devices as detection elements for 
our receiver (for fabrication details, see Section III-B). 
Although junctions using AlN as barrier have intrinsic better 
properties [11], we have selected the former as, at the 
moment, its fabrication process is much more reliable. The 
reasons for which the single junction approach is preferred are 
twofold. First, it permits an easier suppression of the 
Josephson currents across the junction and, second, it allows 
less effort in finding reasonably matched mixers. 

Given the resistance-area product, RnA, of AlOx junctions 
(~20 Ω.μm2), we have selected the area of the SIS junction to 
be 1 μm2 [12]. The resulting SIS impedance has to be matched 
with the impedance at the radial probe tip which is calculated 
through the electromagnetic simulation described in the 
previous Section. The matching is obtained by a multi-section 
stripline made of Nb as shown in the inset of Fig. 2(c). For a 
given stripline geometry, it is possible to calculate the total 
transmission from the radial probe tip and the SIS junction 
using the microscopic theory of superconductivity in the dirty 
limit and standard transmission line theory [13]. The 
geometrical parameters where changed as to get a good 
coverage of band 9. The result of the calculation is shown in 
the thick solid line of Fig. 6.  

C. Planar IF filtering and matching 
To facilitate reliability and modeling, we have opted for a 

planar IF  filtering and matching design (Fig. 3). This is a 
compact unit containing the IF match, DC-break, bias tee, and 
EMI filter. The advantage of such planar structure has been 
demonstrated and used in various astronomical instruments 
[3]. It has to be noted that, for this filter to work, the ground 
plane directly underneath the filter has to be removed. 
Previous to fabrication, the dimensions were optimized for a 
good performance in the 4 to 8 GHz frequency range. In Fig. 
7, we show the calculated performance of the IF circuit. As 
shown in there, the transmission is expected to be greater than 

−2dB in the range of interest and the complex impedance 
limited to a small region. 

Fig. 9.  IV curves of 8 different junctions. The average values of gap voltage 
(VG), normal resistance (RN), leakage resistance (RL), and critical current 
density (JC) are shown. 

Fig. 10.  Single sideband noise temperatures (bottom panel) and image 
rejection ratios (upper panel) at different LO frequencies. Dashed horizontal 
lines represent ALMA specifications for these two parameters. 

III. CONSTRUCTION 

A. Waveguide block 
We have constructed the mixer in a split-block as 

demonstrated in Fig. 8. We have used conventional machining 
for the large features and CNC micromachining for the small 
RF features [2]. Both parts of the block were made of copper 
which is gold platted afterwards with a thickness of ~2 μm. 
The fabricated unit is rather compact (8×2×3 cm3). It contains 
all the RF components, the IF filtering board, the DC biasing 
circuit, and the magnetic probes needed to suppress the 
Josephson currents in the SIS junctions. A closer inspection of 
the fabricated block shows that all the waveguides and 
cavities are approximately 5 μm wider than designed. The 
reason appears to be the gold plating process as it etches away 
the copper that makes the block. However, the erosion is 
rather uniform through the entire block. To determine what 
the influence of this situation will be, we have repeated the 
simulation process with the measured dimensions (dashed 
lines in Fig. 4a). It is clear that our design is pretty robust as 
long as the symmetry is maintained.  

B. SIS junctions 
The SIS devices were fabricated on a quartz substrate. First, 

a Nb monitor layer is deposited, after which an optically 
defined ground plane pattern of Nb/Al/AlOx/Nb is lifted off. 
Junctions are defined by e-beam lithography in a negative e-
beam resist layer and etched out with a SF6/O2 reactive ion 
etch (RIE) using AlOx as a stopping layer. The junction resist 
pattern is subsequently used as a lift off mask for a dielectric 
layer of SiO2. A Nb/Au top layer is deposited and Au is 
etched with a wet etch in a KI/I2 solution using an optically 
defined mask. Finally, using an e-beam defined top wire mask 
pattern, the layer of Nb is etched with a SF6/O2 RIE, finishing 
the fabrication process. This process renders a high yield and 
good reproducibility as demonstrated by the IV plots of 8 
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junctions (out of a sector containing 20 junctions) shown in 
Fig. 9. 

IV. MIXER CHARACTERIZATION 

A. Band coverage 
The direct response, as function of frequency, of both SIS 

junctions contained in our mixer has been measured using a 
home-made Fourier transform spectrometer. The results are 
presented in Fig. 6. Both junctions present good band 
coverage and are in good agreement with the predicted 
response. The good agreement is obtained despite the 
fabrication errors discussed in the previous Section since those 
errors do not modify dramatically the impedances at the probe 
tip [Fig. 4(a)]. 

B. Noise temperature and sideband ratio 
Noise temperatures (Trx) were measured using the 

conventional Y-factor method. As described in [14], the same 
setup was slightly modified to determine the sideband ratios 
(R) Trx and R for both output bands were determined at 
several LO pumping frequencies and recorded as function of 
IF frequency. The results are summarized in Fig. 10. Both 
quantities are rather close to ALMA specifications as 
indicated by the horizontal dashed lines of Fig. 10. For Trx, 
80% of the band should not exceed 335 K while all points 
should below 500 K [15]. The image rejection ratio, on the 
other hand, should always be above 10 dB. 

Although the noise temperature complies with ALMA 
specifications, it is obvious from Fig. 10 that the IF response 
presents a rather steep increase at high IF frequencies. The 
most probable reason is a mismatch between the SIS 
impedance and the IF unit. Further work has to be done in this 
aspect to improve the noise temperatures. 

The obtained image rejection ratios are in close agreement 
with the modeling prediction given in Fig. 5 if an amplitude 
and phase mismatches of 1 dB and 5° in the IF hybrid are 
considered. These, indeed, are the experimental values 
obtained at 77 K [16]. It has to be noted that the hybrid used is 
a commercial one that has been optimized for operation at 
ambient temperature [17]. It is reasonably to argue that 
mismatches of 0.25dB and 3° can be obtained by optimization 
of the design at low temperatures. In that case, an 
improvement of ~7 dB is expected (Fig. 5). 

V. CONCLUSIONS 
In this article we have presented the design, modeling, and 

realization of a side-band-separating mixer that covers the 
frequency range of ALMA band 9. A full test of the mixer 
was also presented demonstrating that complies with ALMA 
specifications. However, further improvement can be achieved 
if the IF system is optimized and AlN-barrier SIS junction 
technology is used.  
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