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Fig. 1.  (Top) A 700 GHz finline mixer chip. The finline taper runs from the 
left to center of the chip, and the mixer tuning circuit, RF block and bond 
pads are on the right  (Bottom) Cross-sections through the finline taper, 
showing the metallization and the E-field lines.   The finline taper gradually 
transforms the waveguide mode at A through unilateral finline (B) to 
antipodal finline (C), before transitioning from antipodal finline to 
microstrip (D-F). 

Abstract—SIS mixers using finline waveguide to microstrip 
transitions show a number of advantageous features, particularly 
in providing a broadband, fixed impedance feed to the SIS mixer 
tuning circuit.  The large chip area and insensitivity to mixer 
block machining tolerances simplifies the assembly of the mixer, 
as well as allowing more advanced mixer designs to be fabricated 
on a single chip.  Finline SIS mixers have shown good 
performance in the 230 and 350 GHz bands[1][2],  and we have 
also previously reported results from two finline SIS mixers in 
the 600-720 GHz band[3][4], obtaining best receiver noise 
temperatures of ~250 K. 

In this paper we present results from several finline mixers in 
the 600-720 GHz band, using both variants of our original 3-stage 
Chebyshev filter tuned single junction mixers and new Belitsky 
tuned mixers. These dual junction tuned mixers show 
significantly better performance than our previously reported 
results, with receiver noise temperatures below 200 K. 

We present detailed SuperMix simulations of the receiver 
performance and compare these with measured results.  We find 
good agreement between simulations and measured performance 
can be achieved by introducing a small amount of attenuation in 
the RF circuit of the mixer.  We also present simulations of the IF 
bandwidth of finline mixers, and suggest a method by which this 
can be greatly improved. 

I. INTRODUCTION 
uperconductor-Insulator-Superconductor (SIS) mixers are 
commonly used as coherent detectors in millimeter and 

sub-millimeter wave astronomy, and are the basis of the most 
sensitive receivers at frequencies up to a 1 THz.  Modern 
niobium based SIS mixers achieve sensitivities comparable to 
the quantum limit at frequencies up to the superconducting 
energy gap of niobium (680 GHz).  However, above the gap 
losses in the niobium transmission lines become significant, 
while losses in other components of the receiver also increase, 
and so careful analysis and design of the complete receiver 
system is required to achieve the best possible performance. 

In this paper we report results from seven finline SIS 
mixers operating in the 600-720 GHz band, i.e. across the 
superconducting energy gap of niobium.  While finline mixers 
have a number of important advantages, the long length of 
niobium superconducting transmission line that makes up the 
finline taper means that losses may be very large at 
frequencies above the superconducting gap.  We have 
therefore used experimental techniques and numerical 
simulations to separate the various contributions to the 
receiver performance, with the aim of determining the 

performance of the finline tapers across the superconducting 
energy gap. 

Finline tapers have been successfully used on many mm-
wave superconducting detectors, including our previously 
reported 230 and 350 GHz SIS mixers and a 700 GHz 
balanced mixer. We have also recently designed finline tapers 
for the 100 GHz TES detectors for Clover[5], and a 230 GHz 
cold electron bolometer. We have demonstrated that these 
tapers provide a broadband mixer feed that does not require a 
complex mixer block or any mechanical tuning and provide a 
large substrate area that is suitable for high levels of 
integration.  Once the RF signal has passed to the microstrip 
output of the finline taper, the waveguide surrounding the chip 
can be removed, allowing great flexibility in processing the 
RF signal and in extracting IF signals from the chip. 

S 

 

Fig. 2.  The 3-stage Chebyshev tuned mixer and radial RF-choke design.  
Typical dimensions are: A 7 x 26 µm, B 46 x  24 µm, C 10 x 6.5 µm and D 
3 x 39 µm. 
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II. THE 700 GHZ FINLINE MIXER DESIGN 

Fig. 4.  (Top) The mixer chip mounted in the split mixer block and bonded to 
the CPW IF board. (Bottom) One half of the split mixer block, showing the 
SMA connector, IF board, mixer chip and Pickett-Potter horn. 

A. Mixer chip 
The mixer chip (Fig. 1) is deposited in five steps, using four 

UV lithography masks.  First a Nb-AlOx-Nb trilayer is 
deposited (200 nm, 10 nm, 100 nm).  The junction is then 
defined by reactive ion etching, and the first SiO dielectric 
layer (200 nm) is evaporated using the same photoresist mask. 
A second layer of SiO is deposited to thicken the dielectric 
layer to 425 nm. Finally the 400 nm Nb wiring layer (with a 
25 nm Au protection layer on top) is sputtered, forming the 
upper fin, mixer wiring and bond pads. 

The mixer is deposited on a 225 µm fused quartz (infrasil) 
wafer, which is diced and then lapped to 45-60 µm thickness 
on a dicing saw after fabrication. A triangular taper is diced 
onto the front of the mixer chip to prevent reflections from the 
front of the mixer chip. 

The finline taper consists of two niobium fins deposited on 
the quartz mixer chip, that gradually extend from the walls of 
the E-plane of the waveguide until they overlap at the centre 
of the waveguide.  The fins are separated in the overlap region 
by a 0.425 µm layer of evaporated SiO.  Once the fin overlap 
is large enough that fringing effects can be ignored, the top fin 
is tapered away from the wall to form the wiring layer of the 
output microstrip and mixer circuit, before the lower fin (the 
lower layer of the trilayer) is extended across the waveguide 
to form the ground plane of the microstrip (Fig. 1). 

The finline taper is designed using a mixture of transverse 
resonance and spectral domain analysis as the inputs to an 
optimum taper method.  Details of the electromagnetic design 
have already been reported[6]. 

The 20 Ω microstrip feeds the mixer tuning circuit, 
containing the SIS junction(s).  A second microstrip carries IF 
signals from the output of the mixer tuning circuit to bond 
pads at the end of the chip.  DC bias signals are also applied to 
the SIS junction via these bond pads and microstrip. 

Results from mixers using two different types of tuning 
circuits are presented in this paper.  The first design tested 
consists of a 3-section microstrip Chebyshev transformer (Fig. 
2) that transforms the 20 Ω input microstrip impedance to the 
20 Ω plus 65 fF capacitance of the SIS junction.  This circuit 
was optimized using Sonnet em suite to maximize the RF 
coupling to the SIS junction.   

The second circuit (Fig. 3) uses a two junction (or 

“Belitsky”[7]) tuning circuit, consisting of two SIS junctions 
separated by a length of microstrip, and with a quarter-wave 
section of microstrip to match the 20 Ω input microstrip to the 
10 Ω normal resistance of the two parallel SIS junctions.  The 
capacitance of one junction, transformed by the microstrip 
section, cancels out the capacitance of the second junction[8].  
This circuit was optimized using SuperMix[9] to give the 
maximum conversion gain across a broad RF bandwidth.  In 
both circuits the IF signal from the junction is readout via a 
radial stub RF choke to prevent RF signal leaking into the IF 
circuit. 

B. Mixer block 
The split mixer block is directly machined in aluminum in 

two halves, joined along the E-plane of the 160 µm by 320 µm 
waveguide.  The mixer chip is superglued into a pair of 60 µm 

Fig. 5.  The assembled mixer block and support jig.  Visible components 
include: A SMA connector, B electromagnet, C split mixer block, D horn 
aperture and E offset parabolic reflector. 

Fig. 3.  The dual junction tuned mixer and radial RF-choke design. Typical 
dimensions are: A 7 x 48.5 µm, B 5 x 15.5 µm and C 3 x 39 µm.
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Fig. 6.  The mixer assembled into the He4 cryostat.  The horn-reflector 
aperture is to the top left of the mixer block, point through the circular 
aperture in the TK RAM shield.  The Zitex IR filter can be seen over the top 
of the shield. 

Fig. 7.  Measured noise performance for five 3-stage Chebyshev transformer 
tuned mixers.  All of these measurements were carried out at a physical 
temperature of 2.5 K. 

wide by 60 µm deep grooves machined into the waveguide 
walls in one half-block (Fig. 4). 

The mixer is fed by a Pickett-Potter Horn Reflector (PPHR) 
antenna[3] directly machined in two halves into the mixer 
block, with the offset parabolic reflector (used to correct the 
spherical phase cap) mounted onto the jig holding the mixer 
block (Fig. 5).  This feed is relatively simple to machine, and 
provides a good radiation pattern across the mixer band. 

The mixer chip is bonded to a short section of co-planar 
waveguide on RT/Duroid 6010LM that carries the IF and bias 
signals to an SMA connector mounted on the back of the 
mixer block (Fig. 4).  A superconducting electromagnet 
mounted coaxially with the IF board and mixer chip is used to 
suppress the Josephson current in the SIS junction (Fig. 5). 

C. Test receiver 
Experimental investigation of the mixer performance was 

carried out  by mounting the mixer block in an IR labs He4 
wet cryostat, looking out through a thermal filter consisting of 
4 thin layers of Zitex and through either a resonant 610 um 
HDPE vacuum window or a 2.5 mm thick HDPE window 
with corrugated antireflection grooves machined into the 
surface.  A small area of Thomas Keating RAM tiles with an 
aperture around the beam are positioned between the mixer 
block and the thermal filters to help prevent standing waves 
(Fig. 6).  For most of the measured data in this paper, the 
cryostat was cooled to below 2.4 K by pumping on the helium 
bath. 

The IF and bias signals are separated in a Radiall 0-12 GHz 
bias tee.  The IF signal is then amplified by a Berkshire 
4-6 GHz cryogenic LNA with a nominal noise temperature 
less than 4 K, before being passed out of the cryostat to the 
warm IF electronics, consisting of a 4.2-5.8 GHz bandpass 
filter, two amplifiers and a diode power detector. 

LO power was provided by a RPG Gunn diode, doubler, 
tripler chain providing up to 330 µW across a 600-720 GHz 
band.  The LO beam is focused by an offset parabolic mirror 
and then coupled to the mixer via a 8.5 µm or 18 µm Mylar 
beam splitter. 

III. MEASURED PERFORMANCE 
Five 3-stage Chebyshev tuned devices (from 3 fabrication 

batches) and two dual junction tuned devices (from the final 
fabrication batch) were selected for testing on the basis of 
their measured IV curves. Devices with suitable normal 
resistances, low subgap leakages and Fiske resonances close 
to the expected values were chosen for full RF testing.  Noise 
and gain performance of these devices is given in Figs. 7-10. 

Noise performance was determined using the Y-factor 
method with 77 K and 297 K Eccosorb loads, while 
conversion gain was determined by comparing the IF output 
power for the two loads, after calibrating the gain of the IF 
chain using the unpumped SIS junction biased above the gap 
as a noise source.  No corrections have been applied to 
receiver noise temperatures, and the Rayleigh-Jeans 

Fig. 8.  Measured conversion gain for the five 3-stage Chebyshev transformer 
tuned mixers of Fig. 7.  The IF system gain is calibrated, and the conversion 
gain referred to front of the IF amplifier by using the unpumped SIS junction, 
biased well above the gap, as a noise source.  
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Fig. 9.  Measured noise performance for two dual junction tuned mixers. 
Device F73nb-1 B4N1 was measured twice, with significantly better 
performance recorded over a reduced frequency range on the first attempt. 

approximation is used in determining load powers, leading a 
to slight overestimation of the receiver noise. 

Of the five Chebyshev tuned devices, the first two devices 
tested (F72-6 T3N5 and F72-8 T3N1) were deliberately 
chosen because they were tuned above 700 GHz and below 
620 GHz respectively, in order to give reasonable direct 
detection sensitivity for measuring the Pickett-Potter horn 
reflector antenna radiation pattern at the edges of the band. 
The heterodyne performance of these devices was measured 
using an older cryogenic IF LNA, with a noise temperature of 
~10 K. As expected, the performance of these devices is 
compromised by both the poor tuning and noisier IF chain.  
These devices were tested using the corrugated Dewar 
window. In subsequent tests, better performance was obtained 
with the thin resonant Dewar window, and this window was 
used for all other results. 

The other three devices tested were all well tuned, and were 

tested using the IF amplifier described in II.C.  All of these 
devices showed conversion gains between -8 and -10 dB and 
noise temperatures below 400 K across the centre of the LO 
band, with best values of -8 dB and 250 K for F72-8 T6N4 
between 666 and 690 GHz.  The performance below 640 GHz 
for all devices is limited by the available LO power, while at 
the top edge of the band the performance is limited by both 
the available LO power and by the above gap losses in the 
finline and mixer tuning circuit.  

For the best device (F72-8 T6N4), the intersecting lines 
method was used at selected frequencies to estimate the noise 
contribution of from the RF circuits and optics, while the 
measured conversion gain was used to estimate the IF system 
contribution to the noise.  The results of this analysis are 
shown in Fig. 11 and suggest that the noise of the receiver is 
dominated by losses in the RF circuit and/or optics. 

The two dual junction devices tested show better 
conversion gain and noise performance than the single 
junction devices, with best values of -5.3 dB and 196 K for 
device F73nb-1 B4N1 at 660 GHz. 

The direct coupling and heterodyne bandwidth of these two 
devices is significantly wider than for the single junction 
devices, making it much easier to couple LO power.  However 
both devices are still under-pumped at frequencies below 
624 GHz.  The performance of device F73nb-1 B4N1 was 
significantly better during a preliminary test at the centre of 
the band than when the full LO band was measured during a 
second experiment, probably due to a change in the test 
receiver optics between the two experiments. 

Fig. 11.  Measured contributions from receiver components to the total 
receiver noise for device F72-8 T6N4.  The IF noise is estimated from the 
measured conversion gain and IF amplifier input noise temperature (both 
measured directly for the bare amplifier, and as part of the receiver system, 
using the method of [10] ), while the RF side noise contribution is estimated at 
selected frequencies using the intersecting lines method[11].  The remaining 
system noise is assigned to the mixer itself. 

Fig. 10.  Measured conversion gain for the two dual junction tuned mixers of 
Fig. 9.  Again, device F73nb-1 B4N1 showed significantly better performance 
over a narrow frequency range in the first experiment. 

IV. SIMULATIONS OF RECEIVER PERFORMANCE 
Caltech’s SuperMix simulation library[9] was used to 

model the performance of the complete receiver.  The receiver 
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Fig. 14.  SuperMix simulated performance of device F73nb-1 B4N1 as a 
function of IF frequency.  The variation in performance is dominated by the 
effect of the phase of reflections from the finline taper. 

Fig. 12.  SuperMix circuits used to simulate the performance of the complete 
700 GHz finline test receiver.  The top circuit consists of RF frequency 
components, while the lower circuit consists of the IF components. 

is modeled using the RF and IF circuits shown in Fig. 12.  The 
RF circuit consists of the hot/cold load, LO source (with 
300 K sideband noise temperature), beamsplitter, Dewar 
window, finline transition and the mixer tuning circuit.  The 
finline transition is modeled as a circulator with matched load 
to provide input matching and a length of superconducting 
microstrip to model the above gap losses.  The IF circuit 
includes the IF representation of the mixer chip circuits, 
finline taper and bondwire connection to the IF board CPW 
line, as well as a constant noise temperature due to the IF 
amplifier. 

A. Component modeling 
Several new classes were created within SuperMix to allow 

the whole receiver system to be modeled.  The main two 
components required were 2 and 3 port models of a dielectric 
slab placed within the free space beam.  These components 
were used to represent the HDPE resonant window and the 
Mylar beamsplitter, and can represent a dielectric slab at an 
any angle to the beam in either parallel or perpendicular 
polarization.  The scattering parameter calculations for these 
components were derived from the reflection and transmission 
properties given by Goldsmith[12].  A basic check of the 
model was carried out by calculating the transmission through 
the Dewar vacuum window and comparing this with FTS 
measurements of the window, which showed good agreement. 

The effect of the finline taper is included in the simulations 
using two methods.  For RF signals only the above gap losses 
of the finline are modeled by including a length of 
superconducting microstrip, chosen to match the decrease in 
conversion gain above the gap.  For IF signals the finline is 
modeled using Ansoft’s HFSS electromagnetic simulation 
software.  HFSS is also used to model the bondwire 
connections between the mixer chip and the IF CPW 

connection board.  The response of these two IF components 
are shown Fig. 13. 

At IF frequencies, the finline taper is perfectly reflecting (as 
the IF signals are below the cut-off frequency of the 
waveguide), the but the point along the finline at which this 
reflection occurs is strongly frequency dependent, as the cut-
off frequency is tapered along the finline. This gives a 
frequency dependent phase change in the reflection.  
Simulating the mixer performance as a function of IF 
frequency (Fig. 14) shows that this property of the finline 
taper limits the IF bandwidth of the mixer to around ~8-
10 GHz, but has little effect below this frequency. 

B. Receiver performance modeling 
A number of parameters are varied in the SuperMix model 

to fit the simulated mixer performance to the measured 
performance.  These parameters are: LO power (assumed to 
be that required to give optimum conversion gain), junction 
capacitance (chosen to give correct shape to the gain at subgap 
frequencies), and the length and gap voltage of the microstrip 
representing the finline (chosen to give  the correct slope and 
frequency turn-over point at high frequencies).  An additional 
attenuation at variable temperature is included in the RF 
circuit (between the Dewar window and the finline) to fit the 
overall conversion gain and receiver noise temperature. 

These parameters were independently fitted to the measured 
performance of the best devices of each type (F72-8 T6N4, 
Fig. 15 and F73nb-1 B4N1, Fig. 16.).  The performance of 
these devices can be fitted using similar parameters in both 
simulations.  These parameters are given in Table. 1. 

From these results, it appears that there is an additional RF 
loss of -2.5 to -3.5 dB in the receiver, with an effective 
temperature of 100-120 K.  Obviously this may be made up of 
several components, at different points in the system, and may 
not only be in the RF system of the receiver.  

 

Fig. 13.  (Left) Magnitude of HFSS simulated scattering parameters for the 
bondwire connection between the mixer chip and the IF board for IF 
frequencies up to 50 GHz.   (Right) Magnitude and phase of the IF signal 
reflected from the finline taper as a function of IF frequency.  The finline 
appears as an open circuit at 0 and 40 GHz, and as a short circuit at 34 GHz. 

TABLE I 
FITTED SIMULATION PARAMETERS 

Quantity Fitted Values 

Junction capacitance 65-72 fF 
LO power 10-12 µW 

LO sideband temperature 300 K 
Finline equivalent length 600 µm 

Finline gap voltage 2.77 mV (670 GHz) 
RF Attenuation -2.5 - -3.5 dB 

RF Attenuator Temperature 100-120 K 
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Fig. 15.  Comparison of measured data for Chebyshev tuned device F72-8 
T6N4 and SuperMix simulated receiver performance. 

Fig. 16.  Comparison of measured data for dual junction tuned device F73nb-1 
B4N1 and SuperMix simulated receiver performance. 

We suggest several possible sources for this attenuation: 
losses in the Mylar beamsplitter due to water vapor absorbed 
in the lab environment; attenuation in the IR filters on the 
77 K shield of the Dewar; and losses in the IF board, bias tee 
and coax used to connect the mixer chip to the IF amplifier.   
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	Abstract  — Schottky barrier diodes can be used as direct detectors throughout the millimeter- and submillimeter-wave bands. When the diodes are optimized to have a low forward turn-on voltage, the detectors can achieve excellent frequency response and bandwidth, even with zero-bias. This paper reports on the characterization of VDI’s zero-bias Schottky detectors. Responsivity typically ranges from 4,000 V/W at 100 GHz to 400 V/W at 900 GHz and each detector achieves good responsivity across the entire single-moded bandwidth of the input rectangular waveguide. Under low power operation the detectors achieve a measured noise-equivalent-power (NEP) of about 1.5x10-12 W/√Hz, even without signal modulation. Such high sensitivity is expected for any zero-bias diode detector with high responsivity when there is no incident RF power; since only thermal noise can be generated under this condition. However, as the input power is increased, excess noise is generated. This noise typically has a 1/f power spectrum and is commonly known as flicker noise. Flicker noise becomes increasingly important as the input power is increased and signal modulation is generally required to achieve maximum sensitivity.  The signal-to-noise of the VDI zero-bias detectors has been carefully measured as a function of input power and modulation rate. This data allows the user to understand the sensitivity of the detector under real operating conditions, and is therefore far more useful than the simple measurement of detector NEP with zero RF power, which is commonly quoted in the literature for new diode detector designs. 
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