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Abstract—Effects caused by imperfection of extended 

hemispherical immersion lens-antenna are studied numerically at 
865 GHz. Elliptical and aplanatic focusing regimes are tested in 
combination with double-slot and double-dipole feeds for their 
aperture efficiency in the presence of multiple misalignment 
factors, which include possible phase and amplitude asymmetry of 
complimentary SIS tuning circuit. A new balanced lens-antenna 
SIS mixer is analyzed for its aperture efficiency with respect to an 
IF bandwidth of 4-12 GHz. Experimental data on lens-antenna 
SIS mixers with epitaxial NbN-AlN-NbN tunnel junctions is 
presented. 
 

Index Terms—lens-antenna, aperture efficiency, quasioptical 
mixer, SIS mixer, balanced mixer, NbN tunnel junction 
 

I. INTRODUCTION 
he primary cases to use the immersion lens-antenna are as 
following: i) a large-chip integrated circuit containing a 
printed antenna (ex. [1], [2]); ii) a densely packed array of 

printed antennas (imaging array) fabricated on the same chip 
(ex. [3]) or iii) need for a very broadband (multi-octave) 
reception that is not possible with waveguides. The low-noise 
performance of a lens-antenna THz-band mixer employing SIS 
junctions has been demonstrated quite some time ago [4], [5]. 
The most attractive feature of the lens-antenna technology is 
that the size of quasioptical chips is not dependent on 
frequency; the chips are easier to process and can be handled 
with much less caution. Numerical models are often based on 
perfect symmetry of the structure and accuracy of its 
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parameters. However, this cannot be always achieved at 
submillimeter wavelength. The accuracy of mechanical 
(optical) parts and their alignment are limited usually by a few 
micrometers. The misalignment of the lithography process is 
typically up to half-micron. The required accuracy of SIS 
junction size must be often better than 50 nm. This list does not 
include yet some random defects of the structure and slight 
changes in properties of sputtered materials, which are difficult 
to detect. Since we are aiming the option development of 
balanced/quasioptical mixers for ALMA Band-10 
(787-950 GHz), many precise components are used, and the 
tolerance analysis is of great interest for understanding possible 
restriction on design/performance of our mixers. This report is 
focused on analysis of the following specific problems of the 
symmetry-based SIS mixers: 

• Beam distortion of a lens-antenna mixer due to positioning 
error of the antenna with respect to the immersion lens. 

• Beam distortion due to amplitude and phase errors caused 
by photolithography misalignment. 

• Beam distortion due to unequal size and impedance of two 
junctions of a twin-SIS mixer and/or due to inequality of 
two twin-mixers of a balanced lens-antenna mixer. 

• Beam tilt due to unequal phase of two IF output signals of a 
balanced QO mixer. 

The feasibility of the research is not limited to the 
single-element mixer; its results (and methods) can be applied 
to a single-lens imaging array for analysis of its off-axis pixels. 

II. CALCULATION METHOD AND CRITERIA 
The beam has been calculated using a technique of 

well-known Kirhoff-Hugens’ diffraction integral taken over 
the curved surface of the lens. We have analyzed two cases of 
focusing of a spherical lens-antenna: elliptical (synthesized) 
and aplanatic. The printed (lithographic) double-slot antenna 
and the double-dipole antenna with back-reflector were tested 
as feeds of the lenses. First we calculated amplitude and phase 
at two vibrators of a double-element antenna. The far-field 
beam of the antennas was then calculated assuming a sinusoidal 
current distribution along the antenna vibrators. The refracting 
surface of a silicon lens was assumed laying in the far-field. 
The matching (anti-reflection) coating is attached to the lens 
surface. No effects of internal reflection are taken into account. 
The tolerance margins were set as follows: i) off-axis 
misalignment of antenna (X- or Y-offset) up to 10 µm; ii) 
on-axis offset (Z-offset) up to 20 mm; iii) lithographic masks 
offset up to 1 µm; iv) difference in Rn for twin-SIS up to 20% in 
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mixer configurations as in [4], [5]; v) off-axis position of the 
anti-reflection coating up to 10 µm. As the result the excitation 
power ratio of two antennas up to 2.3 and phase shift up to 15 
degrees are used. 

To compare different combinations of lenses and antennas, 
we used the following well-known integral criteria [6]: the 
spillover efficiency 
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yielding the full aperture efficiency as 

tsap εεε ⋅= . (3) 

III. TWO-ELEMENT FEED IN APLANATIC AND ELLIPTICAL 
FOCUS 

The beam and phase patterns of a spherical lens in elliptical 
regime of focusing shown in Fig. 1(a) and Fig. 1(b) are in 
reasonable agreement with [7], [8]. The Gaussian impurity of 
the beam (sidelobes at -18…-20 dB) can be a serious problem 
within an optical system with numerous limiting apertures. 
Fortunately, there is no need in intervening optics between the 
mixer and the sub-reflector of the ALMA telescope, if such 
lens-antenna is used. Since the Gaussian fit of the nominal 
beam is good down to the edge of the sub-reflector at -10 dB 
(Fig. 1a), the beam of the telescope will be essentially the same 
as the sub-reflector were illuminated with a corrugated horn 
antenna. Note that the joint result of all misalignments is rather 
similar to tilt of the beam that can be compensated by 
mechanical rotation of the mixer block for about 0.6 degree. 
The phase error across the beam is less than 1/16 of the 
wavelength (Fig. 1b) thus being below the RMS accuracy of 
the telescope dish. 

The results of aplanatic focusing are presented in Fig. 2(a) 
and Fig. 2(b). Strong diffraction effects are clearly seen within 
the main lobe along with essentially larger phase slope. The 
summary of criteria (1)-(3) presented in Table 1 shows faster 
degradation of the beam efficiency for the case of aplanatic 
focusing, but it remains higher than elliptical one. However, the 
aplanatic focus, unlike elliptical one, does not maintain the 
constant beam-width, so its correction (if any) cannot be a 
simple rotation. Some concerns are arising from the fact that 
intervening optics is necessary for the aplanatic lens-antenna. 
We do not analyze this problem here. 

The aperture truncation analysis presented in Fig. 3 is using a 
few Gaussian beams of different half-power width (20, 30 and 
60 degree) as they were launched by the feed located in the 

point of elliptical focus. It is obvious that much better 
Gaussisity (and beam efficiency) can be achieved, if the 
synthesis of a narrow-beam printed antenna is possible.  

Fig. 4(a) and Fig. 4(b) demonstrate the difference between 
double-dipole and double-slot feed antennas. The far-field 
pattern of the double-dipole antenna, calculated inside the 
silicon lens in presence of misalignments, shows its better 
stability and potentially lower truncation level than for the 
double-slot antenna. This can be explained by the doubled 
number of elements of the array-antenna due to image provided 
by the back reflector. 

IV. BALANCED QUASIOPTICAL MIXER 
The layout of the new balanced quasioptical SIS mixer is 

presented in Fig. 5. The mixer employs two double-slot 
antennas, which are crossing each other in the areas of 
minimum rf current [9]. We have confirmed with CST MWS 
software that the beam quality (shape and efficiency) of the 
cross-slot antenna is generally the same as presented in Fig. 1. 
Each antenna receives one of two orthogonal polarizations, the 
LO and the signal. The signal beam is coupled from two 
vertical slots into twin-SIS mixers, Mixer 1 and Mixer 2, 
exciting them in anti-phase. The LO power is combined from 
two horizontal slots using a RF balun, then split in half and 
supplied to the mixers in-phase. This prevents coupling of LO 
power to the signal beam and vice versa. The LO balun is 
simulated providing phase shift of 180±14º across the band as 
presented in Fig. 6. Since the phase slope of the RF balun is 
small, the essential tilt of the LO beam can hardly be expected 
across the RF band. To combine signals from two mixers 
within 4-12 GHz IF bandwidth, the optimization of the 
half-wave balun is made. It is important to note here that the 
antenna beam pattern of the balanced quasioptical mixer will be 
formed via interference of two IF signals, since they preserve 
the RF phase information.  

Assuming the dynamic resistance of SIS mixers Rd = 290 Ω 
the optimum balun characteristic impedance is found as 135 Ω, 
and its length is 4206 µm. The characteristics of the IF balun 
circuit are presented in Fig. 7 and Fig. 8. Resulting beam 
properties are shown in Fig. 9 as a set of far-field beam patterns 
and in Fig. 10 as a plot of integral efficiencies.  

V. EXPERIMENTAL QUASIOPTICAL MIXER RESULT 
 Along with numerical studies on relatively complex 
quasioptical balanced SIS mixers, we designed a simpler 
double-slot antenna mixer [10], which is aiming to facilitate the 
general development of SIS structures including waveguide 
mixer for ALMA Band-10. Simulation predicted TRX below 
200 K (DSB) for such a mixer, if a good-quality Nb-AlOx-Nb 
twin-junction is implemented into a NbTiN/SiO2/Al microstrip. 
Since now we got samples with epitaxial NbN twin-SIS 
junction (RnA = 18,  A = 0.5 µm2) implemented into 
NbN/SiO2/Al microstrip made in NiCT [11]. This type of SIS 
mixer is being studied for the first time. The mixer chip of size 
2,45 mm x 2.45 mm x 0.3 mm made of MgO (εMgO = 9.6) was 
mounted with a 10-mm diameter silicon lens (εSi = 11.7), which 

18th International Symposium on Space Terahertz Technology 

61



does not have any anti-reflection coating, in the elliptical 
focusing position, Lext = 1.95 mm. The IF chain was connected 
to the mixer block with a 15-cm coaxial cable followed by a 
4-8 GHz isolator. The noise temperature of the IF chain was 
estimated with the mixer’s shot noise being about 10-15 K 
within the 4-8 GHz IF band. The measured mixer gain was 
-15 dB including optical losses of about 3.5 dB and resistive 
loss in the SIS tuning circuit of 3 dB. Correcting for the optics 
loss, we got noise temperature referenced to the (cold) antenna 
of the mixer of about 400 K as shown in Fig. 11. Using 
Tucker’s theory [12] we calculated the available gain of the 
mixer as -7 dB. This value is about 1.5 dB larger than our 
experimental estimate. This discrepancy can be explained with 
losses due to combined effect of long bonding wires 
(1.5-2 mm) and relatively long coaxial cable. The noise of the 
SIS mixer is estimated as 130 K that can be explained by 
presence of the multiple Andreev reflection [13]. The 
experiment has verified the effective magnetic field penetration 
depth of the tuning circuit 
NbN(200 nm)/SiO2(250 nm)/Al(350 nm) being about 300 nm. 
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Fig. 1.  E-plane beam patterns of double-slot lens-antenna (vibrator length, 
L = 100 µm, distance between two vibrators, W = 54 µm) calculated for 
elliptical focusing position (extension from center, Lext = 1100 µm) for case of 
combination of misalignment factors listed in Table 1. (a) Effect of beam tilt. 
(b) Distortion of phase characteristic. 
 
 
 

TABLE I. 
MISALIGNMENT FACTORS AND THEIR EFFECT ON BEAM EFFICIENCY OF THE 

LENS-ANTENNA TWIN-SIS MIXERS. 
 

 Elliptical focus Aplanatic focus 

 
Nominal
position 
of feed 

Mask offset 1 µm 
SIS area 20% 

Y-offset 10 µm 
Z-offset 20 µm 

ARC offset 10 µm 

Nominal 
position 
of feed 

Mask offset 1 µm 
SIS area 20% 

Y-offset 10 µm 
Z-offset 20 µm 

ARC offset 10 µm

Spillover 
efficiency 

(1) 
80.2% 79.8% 85.8% 85.0% 

Taper 
efficiency 

(2) 
87.2% 86.6% 93.3% 92.5% 

Aperture 
efficiency 

(3) 
69.9% 69.1% 80.1% 78.7% 
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Fig. 2.  E-plane beam patterns under the same conditions as Fig. 1, but the 
antenna is placed in aplanatic focusing position (Lext = 840 µm): (a) effect of 
tilting and narrowing the beam; (b) distortion of phase characteristic. 
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Fig. 3.  Dependence of the lens-antenna beam on the beam-width of the feeding 
source. The gaussian beam launcher is combined with extended (Lext=1100 µm) 
hemispherical immersion lens diameter 5.8 mm made of silicon. Note that the 
beam-width and sidelobe level are dependent on illumination angle of the lens. 
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Fig. 4.  Calculated illumination inside the silicon lens by (a) double-dipole 
antenna with back-reflector (L = 42 µm, W = 34 µm, distance to reflector 
23 µm) and (b) double-slot antenna (L = 100 µm, W = 54 µm).  
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Fig. 5.  Layout of the lens-antenna balanced SIS mixer. The output signals IF1 
and IF2 are essentially anti-phased and must be combined at the output of an IF 
balun (not shown). The balun phase delay may change across IF band the 
4-12 GHz IF band that may cause some tilt of the beam of the printed antenna 
array. 
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Fig. 6.  Phase characteristic of 180-degree RF shifter (LO-balun) circuit of the 
quasioptical balanced mixer from Fig. 5. 
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Fig. 7  Amplitude characteristics of an optimized 4-12 GHz IF balun 
(L = 4206 µm, Z0 = 135 Ω) of the quasioptical balanced SIS mixer from Fig. 5: 
S11 stands for reflection at the combining point connected to IF amplifier 
Zin= 50 Ω, S21 and S31 are transmission coefficients from IF ports of the two 
mixers. 
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Fig. 8  Phase characteristics of an optimized 4-12 GHz IF balun of the 
quasioptical balanced SIS mixer from Fig. 5 
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Fig. 9  Beam profiles calculated for a balanced quasioptical SIS mixer from 
Fig. 5 within IF-band 4-12 GHz. 
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Fig. 10  Beam efficiency calculated for a balanced quasioptical mixer from 
Fig. 5 at 865 GHz. Note that the beam of the two-antenna array is defined for a 
balanced mixer by the interference of two signals at the output of the IF balun 
circuit. 
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Fig. 11  Preliminary result on noise temperature (DSB) of quasioptical 
double-slot antenna receiver (L=100 µm, W=54 µm) in elliptical focusing 
position (D=10 mm, Lext=1950 µm). The main goal of this test device is to attain 
parameters of a particular circuit with epitaxial NbN SIS junctions [11].  

VI. CONCLUSIONS 
The tolerance analysis has demonstrated that the behavior of 

a lens-antenna is dependent on the type of focusing (elliptical 
vs. aplanatic) and on the antenna-feed design (double-slot vs. 
double-dipole with back-reflector). Misalignment of the lens 
feed with respect to the optical axis brings the greatest beam 
distortion, and the effect of multiple misalignments can be 
characterized as the tilt of the beam with a few percent drop of 
the integral beam efficiency. It looks possible in most cases to 
correct the beam tilt by the mechanical rotation of the 
lens-antenna mount about its phase center. For doing this 
correction efficiently, no near-field intervening optics is 
desirable in front of the lens-antenna. In spite of the better 
integral efficiency of the aplanatic focusing, the combined 
effect of the misalignment and the intervening optics 
(accounting for its loss) can be a source of additional beam 
distortion that has to be studied in more details.  

The numerical study of the new balanced quasioptical mixer 
demonstrates that reasonable stability of its beam over an IF 
band of 4-12 GHz can be achieved with a relatively simple 
balun circuit.  

The noise temperature of 400 K (DSB, corrected for optical 
loss) is demonstrated at 890 GHz for a new double-slot antenna 
SIS mixer employing epitaxial NbN twin-SIS junction and 
Al-wiring. This result is verified with Tucker’s theory being 
limited by the quality of the IV-curve and by loss in the 
NbN/SiO2/Al tuning circuit. To understand the relatively high 
noise of the NbN SIS mixer, the effect of multiple charge 
transfer (Andreev reflection) has to be taken into account. 

We hope that present research can help in separating the 
problems of effective utilization of lens-antennas into two 
groups: i) beam distortions caused by the design of a 
lens-antenna itself and ii) distortions arising from properties of 
the extended optical path including effects of truncating 
apertures, ghost reflections, etc. 
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