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I. ABSTRACT 
This paper describes the design methodology used to develop local oscillators for the ultra-sensitive single-ended sub-millimeter 

wave mixers used in ALMA.  Recent results of the ALMA LO system are presented, showing little or no noise added to the receiver.  
Measurements of excess amplitude noise from ALMA LO prototypes in the development phase are also shown.  A design methodology 
is presented for suppressing amplitude noise in LO chains, using examples from different ALMA bands.  We conclude with 
recommendations for future sub-millimeter LO systems.   

II. INTRODUCTION 
HE Atacama Large Millimeter Array (ALMA) telescope currently under construction on the Atacama plateau in northern 
Chile will have at least 66 antennas and will cover 30 to 950 GHz in ten bands using dual-polarized heterodyne receivers.  

Currently, all bands under construction use single-ended SIS mixers.  In a single-ended mixer, noise on the sidebands of the LO 
is downconverted into the IF and is indistinguishable from the desired IF signal.  It therefore is equivalent to an increased mixer 
noise temperature.  The amount of noise downconverted to the IF is equal to the LO power used to pump the mixer divided by 
the signal-to-noise-ratio (SNR) of the LO. 

T 

In this paper, we briefly outline the early development of the ALMA local oscillator drivers, primarily in regards to addressing 
amplitude noise.  Measurements of early prototypes showed considerable amplitude noise originating from the LO.  Further 
measurements at several receiver bands along with some simple calculations and models indicated a few key steps to take to 
suppress this noise contribution.  The current LO design, taking into account these findings, is presented with measurement 
examples showing minimal receiver noise contributions.  We then concentrate on two remaining potential problem areas, which 
can be very difficult to fully eliminate in broadband LO systems.   

III. DESIGN AND DEVELOPMENT 
A block diagram of the band 6 (211-275 GHz) ALMA LO system is shown in Fig. 1 as being representative of the ALMA LO 

system.  Noise is introduced into the system predominately from each of the amplifiers in the chain.  The YIG tuned oscillator 
module also contains an amplifier.   

The first LO prototypes employed discrete connectorized modules for each of the amplifiers, multipliers, and filters following 
the YTO with SMA adapters and coaxial cable in between the components.  The first WR-10 power amplifiers used in these 
prototypes used the MMICs and packages developed by the HIFI project [1].  The output power of these initial chains had very 
large ripples as might be expected from all the mismatches and cable lengths.  A more critical problem with such an arrangement 
was the resulting sideband noise.  Fig. 2 shows the measured receiver noise when using this LO.  The receiver noise with this 
LO wildly varies with both LO frequency and across the 4-12 GHz IF band.  This is a result of the long mismatched lengths 
between all the components in the LO chain.  Focusing on only two LO frequencies only one GHz apart (250 and 251 GHz) in 
Fig. 3, it is seen how much the noise contribution can vary over a small frequency range.   
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Fig. 1  Block diagram of local oscillator (LO) for ALMA Band 6 (211-275 GHz). 
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Fig. 2  Measured receiver noise temperature of a prototype ALMA Band 6 (211-275 GHz) mixer 

with a prototype LO driver at LO frequencies of 230, 235, 240, 245, 250, and 255 GHz. 
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Fig. 3  Measured receiver noise temperature of a prototype ALMA Band 6 (211-275 

GHz) mixer with a prototype LO driver at LO frequencies of 250 and 251 GHz. 
 

Based on these and other early measurements, a set of guidelines for maximizing SNR in LO chains was developed.  These 
are: (1) modest saturation of amplifiers (3-5 dB gain compression); (2) bandpass filters after each multiplication where possible; 
(3) integration as much as possible to minimize mismatch and standing waves; (4) properly pumped frequency multipliers.   

Using these guidelines, highly integrated LO modules were designed and built.  An example of one of these is shown in   Fig. 
4.   This is an Active Multiplier Chain (AMC) module used for ALMA band 6.  To minimize the effects of mismatch, the 
amplifier, multiplier, and filter functions are all integrated on MMICs and interconnected with 0.002” bond ribbons.  Up to  
about 45 GHz, commercial-off-the-shelf (COTS) MMICs were available.  Above that frequency, wideband MMIC multipliers 
and amplifiers are still not available commercially and had to be developed.  We therefore developed a set of custom MMICs 
using a few different processes.  First of all, multiplier and mixer MMICs from 60-145 GHz were designed and tested with the 
UMS Schottky process [2].  5-section coupled-line bandpass filters were designed and fabricated on 0.003” Alumina.  Alumina 
microstrip-to-waveguide transitions are used based on the design in [3].  Power amplifier MMICs were developed in both 0.1 
μm GaAs pHEMT [4] and 0.1 μm InP HEMT [5] processes. 

Receiver noise measurements from the highest ALMA band currently being built (band 9, 602-720 GHz) are shown in     Fig. 
5.  These are measurements carefully comparing this LO to a Gunn oscillator based LO, showing no noticeable difference.  
These noise measurements are performed using the band 9 mixer test set, not the actual band 9 receiver.  The noise of the actual 
band 9 receiver is much lower [6]. 

IV. MODELING OF AM AND PM NOISE SIDEBANDS 
In a LO chain consisting of a cascade of amplifiers and multipliers, the white noise introduced by each amplifier is half AM 

and half PM, since the noise in any given sideband is uncorrelated with the noise in the other sideband.  A single-sideband 
(SSB) pure noise signal can be decomposed into four components, an AM and PM component of equal magnitude at each 
sideband.  The AM components are in phase with the LO signal and the PM components are in quadrature with the carrier.  
Therefore in one sideband, the AM and PM components cancel, and in the other sideband, they add coherently [7,8]. 

A single-ended mixer is sensitive only to the AM noise components.  This is easy to see in the frequency domain, since the 
two sidebands downconverted to the same IF add in phase, so that the AM components add coherently at the IF, while the PM 
components cancel each other.  Note this is also true for a sideband-separating mixer (SSM), since in a SSM the sidebands of the 
LO are not separated.   

It is therefore necessary to concentrate on propagation of the AM noise components.  The AM noise is limited and suppressed 
in a saturated amplifier.  This was experimentally shown in [9] and can be understood intuitively and modeled by looking at the 
input-output response of the amplifier: 
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Fig. 4  Photograph of Active Multiplier Chain (AMC) module for LO driver of ALMA 211-275 GHz receiver.  Substrate 

and MMIC areas are expanded and shown in detail. 
 

To determine dPout/dPin, either the output power can be measured at very finely spaced input power levels or a polynomial 
function can be fitted to the measured Pout versus Pin curve and the derivative can then be calculated from that polynomial.  A 
typical SNR improvement of 6-10 dB is obtained at a moderate level of gain compression (3-5 dB).  PM noise is not, however, 
suppressed in a saturated amplifier since, to the first order, the phase response does not depend on input power.   

In a multiplier, assuming it is properly pumped, the AM contribution to SNR remains constant since the output power is 
linearly dependent on input power.  PM noise contribution to SNR is increased by the square of the multiplication factor.  The 
consequence therefore of a cascade of amplifiers and multipliers is to decrease the AM noise and increase the PM noise, such 
that by the end of the cascade, the noise is dominated by PM.  Since the single-ended mixer is only sensitive to AM noise and 
not to PM noise, the downconverted IF contains little noise contributions from the LO chain and does not contribute to overall 
receiver noise. 

V. POTENTIAL PROBLEMS 

A. Underpumped multipliers 
AM noise in a properly pumped multiplier does not increase, as explained in the previous section.  However, if the multiplier 

is operated with a low input power, the amplitude of the output signal is no longer linearly, but exponentially, dependent on the 
input signal.  For example, the ALMA band 7 LO was designed to provide 25-100 uW LO power.  However, less than 10 uW is 
required at most frequencies, meaning that, absent a cold attenuator after the final tripler, the tripler must be operated in its 
underpumped mode.  Using Eq. (1) and the measured output versus input power response of the tripler, the AM noise 
enhancement is calculated to be 6-10 dB.  The result is seen in Fig. 6.  By adding a cold attenuator after the final LO tripler 
before the mixer, the multiplier was required to be pumped harder to give the same pump power to the mixer, reducing the 
amplitude noise contributed by the LO to a minimal amount.  This effect was also seen in the ALMA Band 9 (602-720 GHz) 
LO, causing an increase in receiver noise over a small frequency range.  By using a thinner beamsplitter, thereby increasing the 
required drive power to the multiplier, the excess noise disappeared. 

The solution seems simple—avoid underpumping multipliers.  However, in broadband systems, this can be quite difficult to 
achieve in practice.  First of all, sub-millimeter wave power sources are typically designed for maximum power and system 
designers are hesitant to specify a lower power level than what is achievable, since receiver systems at these wavelengths have 
traditionally been LO starved.  Secondly, for wideband systems, it is difficult to maintain relatively flat power versus frequency.  
If the LO power is not sufficiently flat across the band, then in order to have sufficient LO power at the weakest part of the band, 
the strongest part of the band will need to be underpumped.  
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Fig. 5  Measured receiver noise of a Band 9 (600-720 GHz) ALMA mixer with the ALMA LO versus Gunn oscillator LO 

for LO frequencies of 614, 638, 662, and 702 GHz. 
 

B. PM-AM conversion 
Since the PM component of the noise dominates as the noise progresses through the chain of amplifiers and multipliers, even 

a small amount of PM to AM conversion at the end of the chain can cause a large increase in the AM noise, which will then 
negatively impact receiver noise.   

It is instructive to look at PM-AM conversion in the frequency domain.  AM modulation appears as double sideband (DSB) 
modulation where the two sidebands are in phase with one another with respect to the carrier.  PM modulation shows up as DSB 
modulation where the two sidebands are opposite in phase with respect to the carrier.  SSB modulation is therefore equal parts 
AM and PM where the AM and PM components are correlated with each other in such a way as to cancel each other out in one 
of the sidebands.  [7,8] 

The introduction of any element which has an amplitude or phase response which differs at one sideband from the other will 
therefore cause conversion from AM to PM and vice versa.  For example, consider a signal with only PM modulation, and 
therefore double sideband.  Passing this signal through a filter with rejects completely one sideband while passing the carrier and 
other sideband, essentially generating a single sideband modulation, converts half the PM modulation to AM modulation, since a 
single sideband modulation is half AM and half PM.  This can be generalized for any level of amplitude or phase imbalance. 

VI. CONCLUSIONS AND RECOMMENDATIONS 
Recommended guidelines for maximizing the SNR in sub-millimeter LO chains are: (1) modest saturation of amplifiers; (2) 

integration as much as possible to minimize mismatch and standing waves; (3) properly pumped frequency multipliers; and (4) 
bandpass filtering where, to avoid PM-AM conversion, the best approach is to filter both sidebands as high in frequency as 
possible, after as many amplifier stages as possible.  This final point requires the bandwidth of the final amplifier stage to be less 
than the lowest IF.  Besides moving to a higher IF band, this leads the design toward lower-frequency, higher-power final 
amplifiers, saturated and filtered, followed by a higher order multiplier chain.   
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Fig. 6  Measured receiver noise of an ALMA Band 7 (275-370 GHz) mixer with an ALMA 

LO driver with and without an attenuator between the final LO tripler and mixer [10].    
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