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Abstract— We present the design of an InGaAlAs/InP uni-

traveling-carrier photo-diode (UTC-PD) at mm-wave frequencies 
up to 340 GHz. The photo diode epitaxy is optimized using a 
quasi-3D software implementing the hydrodynamic 
semiconductor equations, for which an output power of 3 mW at 
340 GHz was simulated. An equivalent circuit of the UTC-PD has 
been fitted to experimental S11 measurements up to 67 GHz. 
Finally, an optimized antenna coupled UTC-PD with choke filter 
has been designed. This MMIC circuit is intended for 
photomixing, with output power at 340 GHz.  
 

Index Terms— Photomixer, terahertz source, uni-traveling 
carrier photo-diode  

I. INTRODUCTION 
HE increasing demand for sources in the THz frequency 
regime has prompted a numerous number of electrical and 

optical schemes for the generation of sub-mm waves. 
Photomixing, being one of these schemes, relies on the 
nonlinear mixing of two closely spaced laser wavelengths 
generating a beat oscillation at the difference frequency, as 
exemplified in Fig.1. One of the benefits of using this method 
is the wide tunability of the output frequency. The 350 GHz 
[1] band has interesting applications for remote sensing of 
atmospheric gases, which needs a local oscillator (LO) for 
sensitive detection. By using a laser fed LO source the signal 
can be easily distributed by fiber optics and can be used in 
antenna networks for instance.  

In the recent years, there has been an increasing interest in 
the Uni-Traveling-Carrier Photodiode (UTC-PD) for 
photomixing, photo receivers, microwave and mm-wave 
generation, fiber-optic communication systems and wireless 
communications. UTC-PDs offer several advantages over 
PIN-PDs. A UTC-PD uses only electrons as the active carriers 
and hole transport does not directly affect the diode response 
and output saturation. UTC-PDs have become very promising 
by demonstrating output powers of 20 mW at 100 GHz [2]   
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Fig.1. By shifting the laser wavelength slightly we can achieve wide tunability 
of our electrical output 
 
and 25 µW at 1 THz [3]. 

We report our research results based on the InGaAlAs/InP 
uni-traveling-carrier photo-diode (UTC-PD) at lower 
frequencies (<60 GHz) extending up to 340 GHz. Our 
research goal encompasses realization of compact and tunable 
THz sources by photomixing and integration of the 
photomixer with antennas.  

II. UNI-TRAVELING CARRIER PHOTO-DIODE 

A. Working Principle 
Electron-hole pairs are generated when the light is absorbed 

in a photo diode. For the conventional PIN-PD this occurs in 
the undoped, intrinsic region. This results in an approximately 
equal length of transport for both holes and electrons. Because 
of the significantly larger mass of the holes these limit the 
speed of the device. In a UTC-PD on the other hand, the light 
is absorbed in the p-doped region thereby significantly 
shortening the distance to the p-contact for the holes. In this 
way we also avoid the build-up of holes that would at some 
point screen the acceleration field normally present in the 
device. Fig.2 shows a comparison between the operational 
principles of the PIN-PD and the UTC-PD. In the 
conventional PIN-PD, under a high-excitation condition the 
band profile changes as photo-generated carriers are 
accumulated in the absorption layer. This in turn decreases the 
electric field and drastically reduces the carrier velocity and 
results in output current saturation. In the case of the UTC-
PD, the space charge consists of only electrons whose velocity 
at overshoot is much higher than that of holes, even for the 
decreased electric field, and thus postpones current saturation. 
In UTC-PDs, high electron mobility in the depletion layer can 
be maintained at a relatively low electric field or even with the 
built-in field of the p-n junction. This enables high-speed 
operation of the UTC-PD without applying any bias voltage. 
The device thereby offers higher operation current and lower 
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operation voltage [4].  
We can see from Fig. 2 that UTC-PDs have separate 

absorption and depletion regions. The absorption layer and the 
depletion layer thicknesses in the UTC-PD structure can 
therefore be independently designed. This means that a very 
thin absorption layer can be used for higher bandwidth 
without sacrificing the RC charging time. On the other hand, 
in the PIN-PD the RC charging time becomes significantly 
larger when the absorption layer thickness is excessively 
reduced to decrease the carrier transit time. 

  

 
 

Fig.2. Schematic band diagrams of a PIN-PD  and an UTC-PD [5] 
 
This work features InGaAlAs/InP UTC-PD devices for 

which InGaAs is the absorbant and 1.55 μm is the operating 
wavelength. By using this standard telecommunications 
wavelength we have a wide spectrum of relatively 
inexpensive, high performance equipment at our disposal.  

B. Device Fabrication 
The fabrication of the InGaAlAs/InP UTC-PD’s is initiated 

by growth of the material layering by our in house molecular 
beam epitaxy (MBE) system. To fabricate the devices 
standard III-V processing techniques are used. This includes 
photolithography UV/DUV, E-beam evaporation, contact 
annealing, wet etching, dry etching and electroplating. To 
facilitate efficient light collection by the bottom illuminated 
devices the substrate is thinned by lapping and polishing. This 
is followed by Si3N4 anti-reflection coating. Fig. 3 shows 
SEM photograph of two fabricated UTC-PDs of different 
sizes with air-bridges. 

 

 
 

Fig.3. SEM photograph of the fabricated UTC-PDs with a detector diameter of 
20 μm and 3 μm respectively. 

C. Device characterization 
Fabricated devices with 8-17 micron diameters and 220 nm 

absorption layer widths were characterized. These devices had 
a 50 Ohm coplanar waveguide leading up to the device itself. 
The photo-diodes were excited by 1 ps pulses with a 50 MHz 
repetition frequency.  By simultaneously probing the open end 
of the waveguide using a 70 GHz sampling oscilloscope we 
were able to estimate the 3-dB bandwidth of the UTC-PDs. 
The upper graph of Fig. 4 shows an example of the sampled 
impulse response for an 8 micron device.  Because of the 
frequency dependent losses from the bias-T, cables and probes 
a significantly lower 3-dB bandwidth was measured. By 
compensating for the influence of the measurement setup, as 
seen in the lower graph of Fig. 4, we arrived at an expected 3-
dB bandwidth of 60 GHz for these devices.  

 
Fig.4. (upper) impulse response from an 8 mm UTC-PD. (lower) Fourier 
transform of the impulse response with the bandwidth limitations of the 
measurement setup included 

 
Fig. 5 shows the 3-dB bandwidth for different power 

injection levels. We can see that the detector response 
saturates at pulse energies above 1 pJ. Also, we can note that 
10 V reverse bias is more successful in sweeping the large 
number of electrons through the device. As discussed earlier, 
the large number of generated carriers distort the acceleration 
field. But by applying a high external voltage we  
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Fig.5. 3-dB bandwidth versus input pulse energy of an 8 micron device with a 
220 nm absorption layer  
 
counteract this distortion and the onset of the saturation can be 
postponed. 
 

D. Equivalent Circuit 
In order to understand the impedance behavior of the photo 
detector we have compared measured s-parameters with an 
equivalent circuit model. This will allow us to estimate the 
device impedance when scaling down the detector area for 
higher frequencies.  

In principle, the equivalent circuit of a UTC-PD can be  
 

 
(a) 

 

 
 

(b) 
 

Fig.6. (a) Equivalent circuit of the UTC-PD (b) simulation and 
measurement results (S11).   

realized as a current source IUTCPD in parallel with a very high 
resistance RUTCPD and capacitance CUTCPD. The fabricated 
UTC-PD devices have a short strip of coplanar waveguide 
(CPW) leading up to them to accommodate the measurement 
probes. The equivalent circuit for UTC-PD and CPW, shown 
in Fig. 6 (a), is modeled in Advanced Design System (ADS). 
The CPW is modeled as a cascade of series inductance LCPW 
and shunt capacitance CCPW. Fig. 6 (b) shows the S11 plot 
attained by simulation and measurement from 10 GHz to 67 
GHz.   

III. EPITAXIAL MODELING 
To optimize the UTC-PDC epitaxial layering for the task at 

hand, we implemented a quasi-3D model using a commercial 
TCAD software [6].  Fig. 7 shows the graphical user interface 
describing the epitaxial layering of the device. 

 
Fig.7. Graphical user interface of the TCAD software with the layer 
compositions marked  
 

These calculations use the hydrodynamic model to model 
the carrier transport through the photo-detector. In this way 
we take into account the velocity overshoot in the device. Fig. 
8 (a) shows the difference in electron velocity between the 
conventional drift diffusion (DD) and the hydrodynamic (HD) 
model. Since the carrier transport in the UTC-PD is 
predominantly governed by electrons the significant 
discrepancy between the DD and HD model will influence the 
simulation results. Fig. 8 (b) shows the energy band diagram 
under different optical injection levels. We can see that above 
some injection level the carrier accumulation impairs the 
acceleration field in the collector region and thereby saturates 
the detector response.  

This is also evident in Fig. 9 (a) in which the detector 
responsivity has been plotted against different optical input 
powers. We can see that at some point saturation effects limit 
the amount of power that the UTC-PD can handle. Note also 
the difference between the DD and the HD model. Since the 
DD model doesn’t include velocity overshoot effects it clearly 
underestimates the power handling of the device. 
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(a) 

 
(b) 

 
Fig.8. (a) Electron velocity distribution across the UTC-PD  (b) Energy band-
diagram for different optical injection levels calculated using the HD model 
 

  Fig. 9 (b) shows a comparison between the DD and the 
HD model bandwidths for different absorption layer 
thicknesses. Again we can see that the bandwidth is 
underestimated by the DD model because of the inability to 
predict the velocity overshoot. An experimental result has also 
been included in the graph for comparison at 220 nm 
absorption layer thickness. 

IV. LAYER OPTIMIZATION EXAMPLE 
Our goal is to design and optimize a 340 GHz photomixer.  So 
we can therefore use the implemented software to change 
layer thicknesses of our epitaxy to maximize the output 
power. In this case we have chosen to vary the collection and 
absorption layer thickness. The positions of these layers are 
shown in Fig. 10. An optical pulse train with 340 GHz 
frequency and at different power levels was fed into the 
device to mimic photomixing. Fig. 11 (a) shows the resulting 
output power when varying the absorption layer thickness for 
a fixed (263 nm) collection layer thickness. We can see that a 
thickness of ~38 was optimum. By keeping the absorption 
layer constant (38 nm) we then varied the collection layer 
thickness. This is presented in Fig. 11 (b), where we can see 

      
(a) 

 
(b) 

 
Fig.9. (a) Responsivity at different optical input powers  (b) Bandwidth for 
different absorption layer thicknesses 
 
that the optimum collection layer thickness was 140 nm.  

 

 
 

Fig.10. Simulations  varying the absorption and collection layer widths 
 
The trade off in this case is between long carrier transit time 

for a thick collection layer and the high capacitance (RC-
constant) for a thin collection layer. We can note that the 
maximum output power is slightly above 3 mW. In these 
calculations we have not included any losses in the 
outcoupling of the radiation. Also, this optimization was done 
without any thermal analysis, which may limit the manageable 
input power.  
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(a) 

 
(b) 

Fig.11. (a) Optimization of the absorption layer thickness s  (b) Optimization 
of the collection layer thickness 

V. ANTENNA DESIGN 
Due to the benefits of THz technology in various 

applications such as security and imaging systems, 
photomixing with UTC-PDs have proven to be an attractive 
solution for THz generation. A convenient approach for the 
realization of a THz emitter is to integrate the photo detector 
with an antenna.  

As shown in [7], the THz output power from a photomixer 
is proportional to the antenna impedance. For UTC-PD-
antenna integration, different types of antennas such as 
bowtie, log-spiral and log-periodic antenna have been 
reported. However, the impedance of those broadband 
antennas is relatively low [8-11]. Resonant antennas such as 
dipole and slot antennae offer relatively high impedance at the 
resonant frequency [11, 12]. Photomixing with resonant twin-
dipole and twin-slot antennae has also been reported [13].  

Twin-dipole antennas provide symmetric near-Gaussian 
beam pattern. Another advantage of twin-dipole antennas is 
that the high directive gain reduces the reflection loss at the 
surface of a silicon substrate lens. Twin-dipole antennas offer 
the flexibility of inductance tuning by adjusting the length of 
the transmission line connecting the photoconductive gap and 
the antenna. This feature enables us to cancel the capacitance 

of the photoconductive gap and thereby reducing the 
bandwidth limiting RC- constant  

Compared to microstrip lines and coplanar waveguides, 
coplanar stripline (CPS) provides higher characteristics 
impedance [14] and hence suitable for designing antennas 
with higher impedance. Our goal was to design an antenna for 
the UTC-PD which can be monolithically integrated, offers 
higher antenna impedance and thus provides higher power.  

 
Fig.12. 340 GHz UTC-PD antenna with choke filter and biaspads 
 
Therefore, a twin-dipole CPS antenna on 150 µm thick InP 

substrate with gold conductor (2 µm thick) was designed 
having choke filters and biaspads [15]. Fig.12 shows the 
center-fed twin-dipole antenna and the corresponding design 
parameters. In the design, the dimensions were Wh = 5 µm, Sh 
= 20 µm. At first the Hi Z – Low Z choke filter was designed 
and optimized in Ansoft HFSS by varying L3.  

 
(a) 

 
(b) 
 

Fig.13. (a) E-field distribution through Hi Z – Low Z steps of the choke filter 
(b) return loss of the choke filter, resonance at 340 GHz 
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