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Abstract  — Schottky barrier diodes can be used as direct 

detectors throughout the millimeter- and submillimeter-
wave bands. When the diodes are optimized to have a low 
forward turn-on voltage, the detectors can achieve excellent 
frequency response and bandwidth, even with zero-bias. 
This paper reports on the characterization of VDI’s zero-
bias Schottky detectors. Responsivity typically ranges from 
4,000 V/W at 100 GHz to 400 V/W at 900 GHz and each 
detector achieves good responsivity across the entire single-
moded bandwidth of the input rectangular waveguide. 
Under low power operation the detectors achieve a 
measured noise-equivalent-power (NEP) of about 1.5x10-12 
W/√Hz, even without signal modulation. Such high 
sensitivity is expected for any zero-bias diode detector with 
high responsivity when there is no incident RF power; since 
only thermal noise can be generated under this condition. 
However, as the input power is increased, excess noise is 
generated. This noise typically has a 1/f power spectrum and 
is commonly known as flicker noise. Flicker noise becomes 
increasingly important as the input power is increased and 
signal modulation is generally required to achieve maximum 
sensitivity.  The signal-to-noise of the VDI zero-bias 
detectors has been carefully measured as a function of input 
power and modulation rate. This data allows the user to 
understand the sensitivity of the detector under real 
operating conditions, and is therefore far more useful than 
the simple measurement of detector NEP with zero RF 
power, which is commonly quoted in the literature for new 
diode detector designs.  

Index Terms  —  Terahertz detectors, zero-bias detectors, 
noise-equivalent power, flicker noise. 

I. INTRODUCTION 

This article describes the characterization and 
measurement of the responsivity and noise properties of 
zero-bias Schottky detectors that have been developed at 
Virginia Diodes, Inc. The Schottky diode detector has a 
long history of use for the detection of power at mm- and 
submm-wavelengths [1]. Diode detectors can operate at 
ambient or cryogenic temperature and have an extremely 
fast response time compared with other room temperature 
detectors, such as Golay cells, pyroelectric detectors, or 
bolometers [2,3]. An important factor in considering the 
usefulness of all diode detectors is the excess noise 
sources beyond thermal and/or shot noise, such as 1/f or 
flicker noise. Although zero-bias diodes cannot generate 
significant excess noise at very low input power levels, as 

the input power is increased the flicker noise also 
increases and eventually becomes the dominant noise 
mechanism. Thus, characterization of the detector 
requires measurement of the diode’s noise properties 
across the range of input power levels over which it will 
be used.  

VDI’s Schottky diode detectors use rectangular 
waveguide housings and the entire circuit is optimized for 
operation over the full single-moded waveguide band 
without any mechanical tuners. Their responsivity 
typically ranges from about 4,000 V/W at 100 GHz to 
400 V/W at 900 GHz. The primary goal of this 
investigation has been to characterize the sensitivity of 
the VDI zero-bias detectors. Thus, this paper describes 
measurements of the diode’s noise properties over a wide 
range of input power levels. The diode responsivity, NEP 
and signal-to-noise ratio (SNR) are presented.  

II. DIODE I-V CHARACTERISTICS 

The VDI detector diodes are planar Schottky barrier 
diodes fabricated in a flip-chip configuration using the 
basic process described in [ 4 ]. This configuration, as 
shown in Fig. 1, allows for a low parasitic contact that is 
mechanically rugged and repeatable. The measured I-V of 
a WR-10 detector diode is shown in Fig. 2.  In order to 
determine the theoretical voltage responsivity of the diode 
a least-squares curve fit was made between the measured 
data and the exponential Schottky diode I-V equation [5]. 
The measured and curve-fit data for the WR-10 diode 
near zero-bias are shown in Fig. 3. The least-squares 
curve fit parameters for this diode were determined to be 
Isat=11 µA, Rs=19 Ω, Ideality Factor, η=1.13. The zero-
bias junction resistance, dV / dI = Vo / Isat, is 2.6 kΩ; 
where Vo = ηkT/q.  

The intrinsic voltage responsivity of the diode can be 
determined from the diode I-V equation, as [6] 
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Fig. 1. Scanning electron micrograph of a planar Schottky 
barrier diode. Chip dimensions approximately 180x80x40 µm. 
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Fig. 2. The measured current-voltage characteristic of the 
zero-bias flip-chip WR-10 Schottky detector diode. 
 

 
Fig. 3. Curve fit of exponential diode I-V of WR-10 detector 
diode to measured data near zero bias. Curve fit parameters 
Isat=11 µA, Rs=19 Ω, Ideality, η=1.13. 

III. MEASUREMENTS OF DETECTOR 
RESPONSIVITY 

Measurements over the WR-10 frequency band were 
made of the voltage responsivity of the detector diode 
discussed in the previous section. The responsivity is 
shown in Fig. 4. The input power to the detector was kept 
in the range from 3-5 µW, which insured that the detector 
was operating in the square-law region. A WR-10 
directional coupler was used to set the input power into 
the detector and to thereby eliminate the effect of 
standing waves on the measurement. The measured 
responsivity matches well with the predicted value of 
6,500 V/W, indicating that the diode capacitance has only 
a small effect in this frequency range. 
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Fig. 4. Measured responsivity of two WR-10 ZBD detectors. 
The RF power was kept in the square-law region, and ranged 
from 3-5 µW over the band. 

IV. NOISE MEASUREMENTS OF SCHOTTKY 
DIODES IN THE LOW SIGNAL REGIME 

As a start to understanding the noise properties of these 
detectors, measurements were made of their zero-bias 
noise properties. The test configuration consisted of a low 
noise operational amplifier (input noise 3.2 nV/√Hz) with 
a gain of 100 followed by a Tektronix TDS744 digital 
oscilloscope. In order to verify the accuracy of the 
system, the noise properties of 1 kΩ to 10 kΩ resistors 
were measured, and the measurements agreed with 
theoretical predictions to within 10%. Next, the thermal 
noise of a model WR-6.5ZBD detector was measured. 
This detector has a measured zero-bias junction resistance 
of 1.8 kΩ. As shown in Fig. 5, the measured noise was 
found to correspond to that of a noisy resistor with the 
same resistance.  
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When the detector is used to measure small signals, this 
thermal noise will be the dominant noise source. Thus, 
the measured noise voltage and responsivity can be used 
to calculate the NEP of the detector for low input power 
levels. The result for the WR-6.5ZBD detector, is shown 
is Fig. 6. The low power NEP varies from about 1.5 to 2 
pW/√Hz across the detector band.  

 
Fig. 5. The measured noise of a WR-6.5ZBD with no applied 
bias or RF power. The curve fit noise voltage of 5.4 nV/√Hz 
corresponds to the noise from a 1.8 kΩ resistor, which equals 

e measured junction resistance for this detector.  

tion of frequency across the 
waveguide band of the detector.  

ers, about -40 dBm. However, for 
modulation the impact of the noise is greatly 

reduced resulting in improved S/N for detector operation 
at high signal levels.  
 

th
 
 

Fig. 6. The noise equivalent power of a WR-6.5ZBD calculated 
from the measured noise at zero-bias with no RF power and the 
measured responsivity as a func

V. DYNAMIC RANGE OF SCHOTTKY DETECTORS 

In order to characterize the performance of the WR-
6.5ZBD under applied RF power, its noise properties 
were measured for varying levels of applied signal power. 
The measurement setup described in the previous section 
was used, with the addition of a DC block after the 
detector to avoid saturating the low-noise amplifier. The 
measured curves for applied power ranging from -18 
dBm to -2 dBm are shown in Fig. 7. As is shown by the 
curve fits, the measured noise  matches the expected 1/f 
shape.  

Using the measured noise characteristics we can 
determine the effect of the flicker noise on the detector 
signal-to-noise as the applied power is increased. As was 
shown in Fig. 7, the flicker noise factor increases roughly 
linearly with the applied power. Figure 8 shows the 
measured signal-to-noise for the WR-6.5ZBD for 
modulation rates ranging from 10 Hz to 100 kHz. The top 
curve (blue) shows the signal-to-noise for an ideal square-
law device without 1/f noise and ignoring saturation 
effects at large signal levels. The next curve (pink) shows 
the effect of detector saturation, which acts to lessen the 
S/N improvement as the input power is increased. The 
three remaining curves show the actual S/N of the 
detector as a function of input power and modulation rate. 
For very low modulation rates (~10Hz) the S/N saturates 
t rather low input pow
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ig. 7. The measured noise of a WR-6.5ZBD for varying levels 
f detected signal. The applied power levels were: -18 dBm for 
det=23 mV, -13 dBm for Vdet=54 mV, -8 dBm for Vdet=112 
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ross the full waveguide band.  
In large signal applications the flicker noise becomes 

increasingly significant; and thus modulation is required 
to achieve optimal sensitivity. The effect of diode 
saturation and flicker noise on the signal-to-noise ratio of 
the detectors, as a function of modulation, has been 
investigat

aph.  
These results have confirmed that measurements of the 

NEP of diode detectors at very low power levels is not 
sufficient to characterize their performance in the broader 
range of applications
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