
 

                                                          

 

Recommendations for Waveguide 
Interfaces to 1 THz 

 
J.L. Hesler, A.R. Kerr, W. Grammer, and E. Wollack 

 
 Abstract — The existing waveguide interface standards are 
generally found to be  unsatisfactory above 110 GHz.  An 
improved interface is proposed which is backward-compatible 
with the MIL-DTL-3922/67C standard and most of its higher-
frequency variants.  As there are currently no standard 
waveguide bands above 325 GHz, an extended set of bands is 
recommended for operation to 1100 GHz.  
 
 Index Terms — Waveguides, millimeter-wave waveguides, 
rectangular waveguides, submillimeter-wave waveguides, 
standards. 
 

I.  INTRODUCTION 
1 

he existing waveguide interface standards above 110 
GHz, from WR-8 (90-140 GHz) to WR-3 (220-325 GHz), 

have long been known to have significant limitations. Over 
the years, efforts to modify and improve the standards have 
been made at companies such as Aerowave, Agilent (HP), 
Custom Microwave, Flann, Maury Microwave, Millitech, and 
Oleson Microwave Laboratories, as well as at various research 
institutions [1-3]. These efforts lead to the creation of 
competing and often incompatible interface standards. 
Furthermore, for frequencies above 325 GHz there are no 
universally supported waveguide standards at present, 
although at least one new set has been suggested [4].   
 In the 1960s and early 1970s, the industry wrestled with 
standardization issues remarkably similar to those under 
discussion today.   As organizations developed interfaces to 
meet their own needs, multiple flange variants were developed 
complicating progress toward a universal standard [5].   This 
anarchy persisted until the 1975 release of  MIL-F-3922/67B, 
which specified round millimeter-wave flanges for use 
through 110 GHz.  Most notable in that specification was the 
explicit definition of the alignment pins and pin-holes. Several 
studies have shown that the flange works as designed through 
110 GHz [1].  Used with WR-15 and smaller waveguides, the 
0.750" diameter flange is commonly called the "750-round" 
flange (round flanges are still often referred to by their 
outdated 1950s AN nomenclature: UG-383, UG-385, UG-
387).  The current version of the Military Specification is 
MIL-DTL-3922/67C. Above 110 GHz, the so-called mini-
flange, MIL-F-3922/74, was specified to operate up to 325 
GHz (WR-3), but with experience it was found to have poor 
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repeatability, as well as being difficult to machine. The 
community became dissatisfied with the mini-flange, 
preferring instead variations of the 750-round flange with 
tightened tolerances. Different groups developed different 
variants of this standard, with a resulting loss of cross-
compatibility. For these reasons, it is important to establish a 
new standard which allows the development of compatible 
components for the THz community.  
 This paper presents recommendations for a standard 
waveguide interface and also a set of frequency bands for use 
from 110 to 1100 GHz. These recommendations are based in 
large part on work carried out for the multi-national ALMA 
project [6]. The interface has been successfully implemented 
for substantial numbers of both passive and active waveguide 
components at frequencies ranging from 31- 950 GHz. A 
number of factors in the choice of a waveguide interface are 
discussed, including tolerances, interface size and pattern, 
backward compatibility, English vs. metric units, and the use 
of  anti-cocking flanges. For frequencies above 325 GHz, we 
propose defining waveguide bands in a manner consistent 
with the existing set of overlapping waveguide bands 
specified in MIL-DTL-85/3C. 

II.  GOALS OF A WAVEGUIDE INTERFACE STANDARD 

 The main reason for developing a waveguide interface 
standard is to ensure compatibility of components from 
different groups.  The following features and goals are 
desirable: 
 1) Repeatable operation to ~1 THz with low reflection. 
 2) Backward compatiblility with existing interfaces and 

waveguides below 325 GHz. 
 3) Ease of machining. 
 4) Applicability to extruded waveguide and to 

electroformed and machined blocks.  
 5) Asexual, to avoid the need for male and female flanges. 
 6) Anticocking, but should not require surface relief on 

machined blocks. 
 
Backward Compatibility 
 Over the past 30+ years, a large amount of waveguide 
hardware has been developed for 75-325 GHz using either the 
750-round flange or the mini-flange.  In that time, laboratories 
have accumulated many components while manufacturers 
have made a substantial investment in tooling (fixtures, 
mandrels, jigs, etc.) to produce these parts, and in inventory.  
Because of this broad infrastructure, backward compatibility 
is an important practical consideration when developing a new 
interface standard. While backward compatibility may not be 
possible with all variations of the old interface, it should not 
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g machine.  

be ruled out; rather, the cost benefits of backward 
compatibility (not having to replace existing equipment) must 
be weighed against the potential performance advantages of a 
new but incompatible interface. The waveguide and interface 
standards proposed here are compatible with most existing 
hardware, and as such offer an appropriate path forward.  
 One important aspect of backward compatibility is the use 
of metric as opposed to English units. From a scientific 
viewpoint it would be desirable to have a metric interface 
standard, but backward compatibility precludes this. For this 
reason, the interface and waveguide sizes proposed here are 
based on English units. 

III.  WAVEGUIDE INTERFACE RECOMMENDATION 

 A diagram of the proposed waveguide interface is shown in 
Fig. 1. This interface is an extension of MIL-DTL-3922/67C 
interface with tightened tolerances and anti-cocking 
characteristics. A number of factors must be considered. 
 
Interface Tolerancing 
 The tolerancing of the interface, particularly the alignment 
pins and pin-holes, is crucial to accurate mating of two 
waveguides, and thus to minimizing the reflection at the 
interface. However, there is a tradeoff between interface 
alignment, machinability, mating force, and binding at the 
interface. The common use of drilling jigs for manufacturing 
waveguide interfaces sets limits to the achievable angular 
alignment of the pins, and so interfaces made using drilling 
jigs are likely to be limited to 
use below 325 GHz. By using 
CNC machines to fabricate the 
interface as an integral part of 
a waveguide component it is 
possible to maintain tighter 
tolerances, thus minimizing 
reflections at higher 
frequenices. In order to 
provide the greatest flexibility, 
a multi-tiered tolerancing 
scheme is proposed, as 
specified in the Tiered 
Tolerancing Table in Fig. 1. 
The tightest tolerances, 
labeled Submm, represent the 
strictest tolerance 
specification that can 
reasonably be achieved using 
a standard high-precision 
CNC millin
 By using the waveguide 
interface misalignment 
simulations described in [1], 
we can link the tolerances 
given in Fig. 1 to a worst-case 
reflection due to interface 
misalignment. Table 1 shows 
the calculated return loss for 
the three tolerancing schemes. 
As can be seen in the table, 

even the tightest tolerance yields only marginal worst case 
performance at 825 GHz (7 dB return loss). This is an 
indication of the practical limit of a machined interface: to 
achieve a satisfactory return loss near 1 THz is extremely 
difficult. To date, above ~1 THz, nearly all devices have 
avoided waveguide interfaces by using integral feedhorns to 
couple power into or out of the component. 
 
Alignment Pins 
 No changes are proposed to the pin originally specified in 
the MIL-F-3922/67B interface. The waist shown in the 
drawing was found to improve the grip of the dowel when it is 
pressed inplace, and so it should be retained. 
 One additional consideration related to the pin is its height 
above the plane of the interface. In general, the pin height 
should be minimized to reduce binding and to ease the angular 
tolerance. However, the pin must also be tall enough to keep 
the interface in place while the screws are being engaged. As a 
compromise, a pin height of 0.156" above the interface face is 
recommended, as in MIL-DTL-3922/67C. 
 
Annular Recess and Relief Around Pin Holes 
 The annular recess is used to minimize the contact area of 
the interface and thus to ensure greater pressure in the vicinity 
of the waveguide aperture while preserving the anti-cocking 
nature of a flat flange without a central boss. At sub-
millimeter wavelengths, a gap of only a few microns between 
flange faces can introduce significant loss and reflection, and 
the annular recess also helps to avoid gaps caused by bumps 

Figure 1.  Drawing of the recommended waveguide interface from WR-10 to WR-1.0. 
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sed 0.015" 

red, and this is included in 
e interface drawing as an option. 

rable 
characteristic for split-block waveguide components. 

on the mating surfaces from metal displaced when the 
alignment pins are pressed in place (after inserting the pins, 
the flange surface can not be lapped). The propo
deep annular recess provides the necessary relief.  
 Because of the complexity of machining the annular recess, 
the simpler alternative of a 0.14" counterbore (0.015" deep) 
around the pin holes may be prefer
th
 
A Miniature Interface 
 At millimeter and submillimeter wavelengths, the geometry 
of the 750-round interface can force a component to be larger 
than required electrically. For this reason, it is desirable to 
have an alternative miniature interface, preferably one which 
fits within the proposed interface so that parts with miniature 
interfaces can be tested using components with the larger 
standard interface. Such a miniature interface, shown in 
Fig. 2, has been developed at NRAO for use in the ALMA 
project. Similar in size to the mini-flange, it is asexual, and 
has no screw or pin holes in the E-plane, a desi

IV.  WAVEGUIDE BANDS 

 The current standard series of waveguide bands starts in the 
microwave region at 320 MHz (WR-2300), and extends in 
two overlapping series to 325 GHz (WR-3), as specified in 
MIL-DTL-85/3C. If the number following the dash in the 
WR-## nomenclature is divided by 100, the result is the 
waveguide broad-wall width in inches (certain band 
designations, particularly the higher frequency ones, have 
been rounded for convenience). In order to cover many 
decades of frequency, the lower frequency series is extended 
by decades. So, for example, there are waveguide bands at 
2.2-3.3 GHz (WR-340), 22-33 GHz (WR-34), and 220-325 
GHz (WR-3), with broadwall widths of 3.4", 0.34", and 
0.034". This progression can be continued upwards, as shown 
in Table 2 starting at WR-10 and extending to 1100 GHz.  In 
order to avoid confusion caused by rounding of the band 
numbers, we have added an extra significant digit, and thus 
WR-3 becomes WR-3.4 in this nomenclature.  

Figure 2: The Grammer miniature interface fits within the larger MIL-
DTL-3922/67C pattern.  Each side of the interface contains one captive 
pin (P) and a clearance hole (R) for the mating pin.  The bolt holes (Q) 
can be either #2-56 or M2.  Tolerancing for the miniature interface should 
follow that of the proposed larger interface. 
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 In certain circumstances it is necessary to use a waveguide 
band which overlaps standard bands. In practice, the choice of 
a non-standard band may be dictated by a scientific 
application (e.g., an atmospheric window or a group of 
molecular lines) or by a particular component (e.g.,  a 
frequency multiplier whose output range does not fit within a 
standard band).  In such cases, the proposed WR-##  
nomenclature is easily modified by the user with results which 
are immediately clear to other engineers.  
 

V.  DISCUSSION AND FUTURE DEVELOPMENT 

 The proposed waveguide interface and set of waveguide 
bands cover 110 GHz to 1.1 THz.  They are compatible with 
existing standards while offering greater precision and 
repeatability.  For more than five years they have been used 
successfully for hundreds of components made for the multi-
national ALMA project. However, the relatively poor return 
loss at the highest frequencies leaves much to be desired.  It 
has been suggested [7] that alignment tolerances could be 
tightened significantly by using shorter alignment pins.  By 
reducing the protrusion of the pin above the plane of the 
interface from 0.156" to 0.070", a pin hole diameter of 
0.0625" could be used with a pin tolerance range of 0.0005".  
This would improve  the worst-case return loss below 1.1 THz 
to 10 dB. 

 The effect of the specified interface flatness on loss and 
return loss is not well understood.  Non-flat flange pairs could 
be investigated, either experimentally or by electromagnetic 
simulation, to determine the necessary flatness tolerance. 
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