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The submillimeter and millimeter space astronomy will 
require higher sensitivity instrument for the future missions. 
Large bolometer arrays filling the telescopes focal planes 
are a promising solution to this sensitivity increase. 

New techniques in microelectronics allow to build such 
arrays of detectors using collective processes. We present 
here the developments led in France of bolometers arrays 
using NbSi alloy thermometers. NbSi films can be made 
either high impedance or superconducting. We describe the 
manufacturing process of the array and the tests 
perspectives. 

1. Introduction 
The submillimeter and millimeter wavelength range is 

entering a new era with the launch to come of the Planck 
and Hershel space missions. The observations from above 
the atmosphere, opaque excepted for a few windows of the 
spectrum, will give unprecedented access to the studies of  
the interstellar medium, the galaxies, the large structures of 
the universe and the cosmic microwave background 
(CMB). 

 
The design of present space missions dedicated to 

submillimeter and millimeter broadband or low spectral 
resolution observations is based on direct detectors limited 
by the photon noise of the incoming radiation in a 
diffraction limited beam. Bolometers are the most sensitive 
detectors for this purpose. They are associated to feedhorns 
and arranged in groups covering a fraction only of the focal 
plane area. The advantage of well defined beams is 
therefore counter-balanced by the loss of a large fraction of 
the collected photons. This is the case in the HFI/Planck 
and SPIRE/Herschel instruments. 

 

Among the topics that will need further observations 
following these two missions, the study of the inflation 
phase of the universe will require large improvements of 
sensitivity in the measurement of the CMB polarized 
emission. The ESA Cosmic Vision and NASA Beyond 
Einstein programs includes missions dedicated to these 
measurements. 

 
An increase factor of 10 to 100 is required in sensitivity 

with respect to current instruments. It cannot be obtained by 
increasing the integration time, already counted in years for 
a whole sky survey. The only solution is a full coverage of 
the focal plane by large contiguous detector arrays of 10 
000 pixels or more, with individual pixel NEPs below 
10-17 WHz-1/2. 

 
We present here a french collaborative effort in the 

developpement of such arrays. The DCMB 
(Développement Concerté de Matrices de Bolomètres) 
R&D program is supported by CNES (Centre National 
d'Etudes Spatiales), the CNRS (Centre National de la 
Recherche Scientifique) and the participating Universities. 

 
The subsystems concerned by the R&D program are: the 

thermal architectures of the bolometers arrays, the  
thermometers, the coupling with the optical radiation and 
the readout electronics. Two types of thermometers are 
beeing studied, based on Niobium Silicon alloys: high 
impedance (Anderson isolator) or superconducting [1]. 

18th International Symposium on Space Terahertz Technology 

105



2. Arrays manufacturing  

2.1 Thermal architecture 
The thermal architectures is developped in common for 

both types of thermometers in the microelectronics facility 
IEF/MINERVE of Paris Sud-11 University at Orsay. Two 
architectures have been designed, a 204 pixels array and an 
23 pixels array. The former (fig. 1) will be used in a 
millimeter camera for the 30m IRAM telescope on Pico 
Veleta (Spain). 

 

 
 

Figure 1: 204 pixels array architecture 
 
The later (fig. 2) is designed to be used in the Olimpo 

balloon program with a feedhorn array in front of the 
detctors. 
 

 
 

Figure 2: 23 pixels array architecture 
(thermometers only) 

 

2.2 Thermometers 
The two types of thermometers studied are based on 

Niobium Silicon alloys. These are high impedance 
(Anderson isolator) [2] or superconducting (Nb fraction 
larger than 0.13). The thermometric sensor is composed of a 

film of NbSi co-evaporated by irradiating two targets of Nb 
and Si simultaneously. 

 
In the case of the superconducting sensor, the mixing 

ratio x of the 100 nm thick NbxSix-1 thermometer is adjusted 
in order to obtain the goal transition temperature. In order to 
lower (below 1 Ω) the average resistance of the film at the 
middle of the superconducting transition, an interleaved 
comb geometry is used for the Nb electrodes (fig. 3). A 
typical NbSi thermometer (10 mm x 10 mm) transition 
curve was previously measured [3]. The design is scaled 
down to 0.8 mm x 0.8 mm for the 23 pixels array (fig. 2). 

 
Nb and NbSi are deposited in dedicated evaporators and 

co-evaporators of CSNSM/Orsay. 
  

 
 

Figure 3: NbSi superconducting thermometer. The leads 
comb structure is Nb, and the square NbSi. 

 

2.3 Microfabrication process  
The steps of microfabrication of the superconducting 

bolometers are as follows:  
 
1. Deposition of membranes material by PECVD (SiO2 

+ Si3N4: SiO2/SiN/SiO2 = 290/230/100 nm) 
2. NbxSi1-x co-evaporation (x=15.55%, 1000 Å) 
3. Nb evaporation (500 Å) 
4. Au evaporation 
5. Silicon deep etching 

2.4 Readout 
Multiplexed readout will be performed using HEMT for 

the high impedance thermometers, and using a 4K SiGe 
ASIC associated with SQUIDs for the superconducting 
thermometers. Developpement of the  ASIC is described by 
D. Prele et al. (this conférence).  SQUIDs mux and 
amplifiers procurement is currently in discussion with 
Supracon (Jena). 
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2.5 Coupling with radiation 
The 204 pixels array includes an antenna pattern 

associated to a dissipator for the coupling with the incoming 
radiation [4]. For the first realisation of the superconducting 
array, the radiation will be absorbed by a standard resistive 
layer or a grid adapted to the vacuum impedance. The long 
term goal is to couple to the incoming radiation by means of 
antenna [5]. 

 

3. Test perspectives 

Tests and characterisation of the high impedance arrays 
are described in [1]. The test setup for the superconducting 
array is under development. NbSi alloy is a new material 
for TES design, it requires a full characterisation and 
validation before using it to produce large arrays. The 
uniformity of the superconducting transition temperature 
and slope will be measured on a 23 pixels array for which 
only the thermometers are built (fig. 3). In parallel, we will 
characterize the noise properties of a single NbSi 
superconducting thermometer. The test setup is based on a 
commercial SQUID system from Star Cryoelectronics, and 
a 300 mK mini-fridge and a thermal stage regulated 
between 300 and 500 mK.  

 

4. Conclusion 

While the high impedance arrays are mostly validated 
and characterized, the development of superconducting 
arrays is starting and its testing phase is only beginning 
Once this phase is passed, we will be able to continue the 
integration of a complete array of superconducting 
bolometers with optical coupling. 
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