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Abstract—Heterodyne mixing performance of a waveguide SIS 

mixer with inhomogeneous distributed junction (DJ) array 
composed of 3 SIS junctions is experimentally investigated at 
375-500GHz.   Quantum-limited noise temperature of 3-DJ mixer 
is demonstrated. Besides its low noise temperature, the mixer 
conversion gain of 3-DJ mixer is found to be more uniform over 
RF band than that of a PCTJ (parallel-connected twin junctions) 
mixer. The FTS (Fourier transform spectrum) response indicates 
a broad RF bandwidth of the 3-DJ mixer that is limited by the 
bandwidth of waveguide probe instead of mixer’s tuning circuit.  
 

Index Terms—SIS mixers, Submillimeter wave, Distributed 
junction array, Noise temperature, Gain flatness.  

I. INTRODUCTION 

 HE RF bandwidth of an SIS mixer is restricted by the 
bandwidth of antenna (waveguide probe) or the tuning 

circuit used for tuning out the geometric capacitance of tunnel 
junction. The bandwidth of waveguide probe can be as wide 
as 30% and be much wider in the case of quasi-optical mixer. 
The bandwidth of tuning circuit, usually the actual threshold 
of overall bandwidth, is determined by the quality factor of a 
resonator-like tuning circuit composed of a microstrip 
inductive line and the capacitive tunnel junctions. The quality 
factor Q is proportional to the frequency and inversely 
proportional to the current density Q ∼ω/Jc. Therefore, the 
current density must be high in order to achieve broad RF 
band at submillimeter range. However, Jc cannot exceed the 
fabrication limit around 10kA/cm2 when the conventional 
Nb/AlOx/Nb technique is employed. At 500GHz the Q factor 
is normally larger than 5, determining a relative RF bandwidth 
about 20%.  

Mixer designs involving multi-junctions (N>2) or SIS non-
linear transmission lines are found to have broader RF 
bandwidth even with relatively low Jc. These designs 
characterized by distributed mixing with either SIS tunnel 
microstrip line [1][2][3][4] or parallel-connected multi-
junctions [5][6][7][8] or a combination of above two [9]. Most 
of these designs have demonstrated wide RF bandwidth within 

submillimeter range as predicted by theoretical calculation. 
Noise temperature as low as 5 times of quantum limits at 4.2K 
bath temperature has been achieved at 600GHz band by using 
a half-wavelength SIS non-linear microstrip line of a width 
0.55μm [3] and at 200GHz band with an inhomogeneous 5-DJ 
mixer [7]. These designs are potentially useful in some 
applications that require wide-band fix-tuned mixers at low 
device impedance such as integrated receiver with built-in 
FFO (flux flow oscillator). 
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In contrast to SIS non-linear microstrip lines, lumped DJ 
arrays allow large-size junctions that can be easily fabricated 
with conventional photolithography. An inhomogeneous DJ 
array composed of junctions with different dimensions non-
uniformly located along a microstrip transmission line is 
predicted to be more efficient and therefore less noisy than a 
homogenous DJ array [10]. In this paper we present a 
measurement result of 3-DJ mixer that demonstrates an overall 
receiver noise temperature as low as 3 times of quantum limits 
at 4.2K at frequencies ranging from 375 to 500GHz  and with 
4-8GHz IF. Correcting for the contribution from IF chain and 
RF optics, the mixer noise is found to be about one quantum 
limit. The result indicates that the quantum-efficient mixing 
can be achieved with distributed mixing scheme. The RF 
bandwidth (in sense of noise temperature) of PCTJ is found to 
be similar to 3-DJ at this frequency range since the current 
density is rather high. However, the gain fluctuation of 3-DJ is 
found to be much smaller, reflecting a uniform signal coupling 
between source and detector over the RF band. This feature is   
beneficial for actual radio telescope to achieve good linearity 
of backend. 

 

T 

 
Fig.1 Inhomogeneous 3-DJ array Mixer 
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II. MIXER DESIGN 
The first step of inhomogeneous DJ design is to determine 

the junction sizes and the length of microstrip line between 
adjacent junctions in order to achieve minimum return loss 
within a certain RF bandwidth. In principle wideband 
matching theory [11] can be applied for this purpose. Under 
the condition of available junction fabrication process, 
however, the application of this design method is impeded by 
the strong limitations on junction size, current density and 
linewidth of microstrip line. On this account, a random 
searching algorithm is employed to get minimum spreading of 
impedance over the frequency range 375-500GHz.  For a 3-
element DJ there are 5 variables listed in Tab.1 as well as 
some indirect parameters such as Jc and linewidth of strip. 
These variables are confined to certain limits. For example, 
the junction size limit is set to be 1.5~2.2um (for easy 
fabrication with a contact mask-aligner) and the current 
density less than 10kA/cm2.  The SIS junction is modeled by a 
combination of a capacitance and a resistance connected in 
parallel. The specific capacitance of SIS junction is supposed 
to be a function of current density and the resistance is the 
junction’s small-signal resistance that is close to its normal 
resistance. A 5-dimension Sobol quasi-random sequence is 
[12] firstly employed to find a rough range and then a fine 
searching in a narrowed range is performed. In fact there are 
many solutions satisfying the goal of the optimization for the 
reflection coefficient. From those solutions, the best one is 
decided by carrying out a mixing performance calculation 

with our simulation software based on quantum mixing theory 
with a 5-port approximation. 

 The 3-DJ mixer is shown in Fig. 1 and the parameters in 
Table I , where PCTJ design is also listed for comparison. The 
normal resistances of PCTJ, 3-DJ are 8Ω and 
3.7Ω respectively. The input impedances of 3-DJ and PCTJ 
are plotted in a Smith chart (Fig. 2) normalized by their 
normal resistance.  Since the impedance difference of probe 
feed and 3-DJ is quite large, we incorporate a two-section 
impedance transformer, which is superior to a single section 
transformer because of its wider bandwidth.  

A waveguide-microstrip probe is optimized in a half-
reduced waveguide to achieve nearly frequency-independent 
impedance within 385-500GHz at the probe’s feed point [13]. 
The feed-point impedance can be reduced to 30Ω by means of 
adding one section of impedance transformer and reducing the 
height of waveguide to half.  With doing so, the matching of 
the low-impedance DJ over a wide frequency band is 
facilitated.   

TABLE I 
PARAMETERS OF EACH DESIGN 

Design Junction 
Index 

Junction 
Size (um) 

Tuning 
Index 

Tuning 
Length (um) 

PCTJ     
 J1 1.5 L1,2 14.0 
 J2 1.5   

3DJ     
 J1 1.4 L1,2 10.0 
 J2 2.0 L2,3 11.4 
 J3 1.4   

The junction is numbered form left to right in Fig. 1. Lm,n indicates the 
tuning distance between junction m and n. 

 

III. MEASUREMENT RESULTS AND DISCUSSION 
The 3-DJ mixers are measured in a 4-K Gifford-

McMahon/Joule-Thomson mechanical cryocooler. An isolator 
with a built-in bias-T, inserted between the SIS mixer and a 4-
8GHz low noise amplifier, is cooled to 4K to reduce the 
thermal noise injection from its terminated port. An off-axis 
ellipsoidal mirror with an edge-taper of 30dB is put on the 4K 
stage to refocus the beam from the diagonal horn onto an 
external hot (300K) /cold (liquid nitrogen) load. A 100μm- 
thick polyimide film is used as the vacuum window while a 
150μm-thick Zitex sheet cooled at the 70K stage blocks the 
infrared radiation. A 12.5μm-thick polyimide film is used as a 
beam splitter, coupling the LO signal generated by a  Gunn 
oscillator followed by two Schottky-diode doublers with a 
factor of -15dB. 

Typical IV curves as well as IF responses are plotted in Fig. 
3.  The receiver noise and conversion gain of 3-DJ is plotted 
in Fig. 4 as a function of LO frequency between 376GHz and 
496GHz. The performance of a PCTJ is also shown for 
comparison. It is worth noting that the PCTJ is fabricated on 
the same wafer and measured in the same mixer block. Both 

 
Fig. 2 Impedances of input port of PCTJ, 3DJ in 300-600GHz 

 
 

Fig.3  IV curves and IF output measured at 386GHz.
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Fig.4 Comparison of receiver noise and gain of 3-DJ and PCTJ as a 
function of LO frequency. 

 
 

Fig. 5 The FTS responses of 3-DJ and PCTJ 

mixers demonstrate excellent low noise temperature over the 
whole RF band from 375 to 500GHz.  

 A noise breakdown of the whole DSB receiver system at 
427GHz is shown in Table II. The contributions of RF 
insertion loss and input noise from optics are estimated by 
theoretical calculation. The mixer noise is finally calculated to 
be 21.5K (about one quantum limit hf/2KB , where h is the 
Planck’s constant, f is the frequency and KB is the Boltzmann’s 
constant) at this frequency. Since several ellipsoidal focusing 
mirrors at signal path also introduce loss and noise, which are 
not included in this calculation, the mixer noise should be 
even smaller and close to zero-point fluctuation limit, which is 
half of a quantum limit.  

Due to the limitation of LO frequency coverage, the 
performances of both mixers are compared to each other in 
wider frequency range by measuring their FTS (Fourier 
Transform Spectrum) responses. The FTS spectrums in Fig.5 
shows a similar response bandwidth of 3-DJ and PCTJ. The 
lower cutoff frequency is caused by waveguide cutoff 
frequency. The upper cutoff frequency about 600GHz is 
found to be coincident with that of waveguide probe, which is 
simulated with a 3D EM simulation software Ansoft HFSS.  

The measured noise temperatures of 3-DJ and PCTJ in 
frequency range 375-500GHz are quite similar. It is difficult 
to judge which one is superior to the other in sense of noise. 
However, Fig. 4 shows that 3-DJ has a more uniform 
conversion gain in measured frequency range. This should be 
attributed to uniform signal coupling efficiency that we aim to 

realize. Flat conversion gain has some advantages. For 
example, when the noise from IF chain is large, a mixer with 
uniform conversion gain results in uniform overall receiver 
noise temperature over the RF band. Large gain variation may 
also cause non-linearity problems of the backend of a radio 
telescope if no compensation is made to regulate the IF output. 
DJ mixers with flat gain can thus avoid such problems and 
improve the reliability. 

One of the disadvantages of DJ SIS mixer is their relatively 
large LO power assumption, which is almost inversely 
proportional to the device normal resistance. It may limit their 
application in Terahertz regime since LO power is usually 
quite weak unless sub-micro size junction is adopted. Another 
disadvantage of DJ mixer is its relatively large junction 
capacitance that reduces the IF bandwidth. To study the 
influence of junction capacitance on the IF response, we 
measure the mixer’s conversion gain as a function of 
intermediate frequency shown in Fig. 6. The 3dB IF 
bandwidth of 3-DJ narrower than that of PCTJ is indeed 
observed. Such a problem can be partly solved by inserting IF 
matching circuit that tunes out junction capacitance at certain 
IF frequency. However, the total IF bandwidth is still limited 
by the quality factor calculated at IF.  In turn, small junctions 
are required to reduce the geometric capacitance to achieve 

Fig. 6 Mixer conversion gain of 3-DJ and PCTJ as a function of 
intermediate frequency from 4 to 8GHz. 

TABLE II 
NOISE BREAKDOWN OF DSB RECEIVER SYSTEM AT 427GHZ 

Element Tin (K) Gain(dB) Tfront (K) 
IF amplifier 5.2  12.1 
IF Isolator 4.2 0 9.8 
SIS mixer <21.5 -3.12 <24.5 
IR filter 0.18 -0.18 0.2 
Dewar window  4.9 -0.25 5.1 
Beam splitter 9.6 -0.13 9.6 
Receiver   61.3 

The four columns show the element name, input noise, gain and 
equivalent noise referred to the receiver input respectively.  
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wide IF bandwidth. 
 

IV. CONCLUSION 
An inhomogeneous 3-DJ SIS mixer is designed to have a 

uniform signal coupling in the frequency ranging from 375 to 
500GHz. The corrected noise temperature of 3-DJ SIS mixer 
is close to one quantum limit approaching theoretical 
minimum. Such a noise performance is comparable with a 
PCTJ mixer that is fabricated on the same wafer and mounted 
in the same mixer block. The 3-DJ SIS mixer demonstrates a 
uniform conversion gain over the measured RF band in 
contrast to the PCTJ, gaining advantages in some applications 
requiring gain flatness. The 3-DJ SIS mixer has a broad RF 
bandwidth (about 40%) measured from its FTS response. In 
this specific case, the RF bandwidth is determined by 
waveguide probe instead of tuning circuit. 
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