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Introduction 
 
Many observations of molecular lines in interstellar space or planetary atmospheres are affected by serious 
problems with standing wave patterns in the spectra. This becomes particularly nasty when studying broad 
extragalactic or pressure broadened atmospheric lines. When observing at THz frequencies these problems 
become more and more prominent due to the increased required bandwidth. Mostly, such patterns are at-
tributed to reflections in the telescope optics, particularly from the sub-reflector in a Cassegrain telescope. 
But there are many other sources of standing waves in the quasi-optics of a heterodyne receiver. In this 
paper we describe the effect of reflections between mixer and local oscillator (LO) inside of a receiver. 
Some portion of the signal radiation becomes reflected by the mixer, and propagates partly to the LO with 
reduced amplitude due to the generally small reflectivity of the beam combiner. Nevertheless, although the 
power in one roundtrip becomes significantly reduced, there is still enough amplitude left, so that in-
terference with the incoming signal radiation becomes visible.  
The situation is depicted in Fig.1. In the figure the local oscillator and mixer reflectivity is indicated by the 
power reflection coefficients rL and rM respectively. The beam splitter reflects and transmits the power 
with coefficients r and t. The field of the LO at the mixer is composed of the superposition of all partial 
beams which are reflected back and forth between the LO and the mixer. Consequently, after summing up 
all partial beams, the total LO power coupled to the mixer is: 
                 )(0 LLL APrP ν⋅⋅=   with  ( ) 122 )]/2(sin41[)( −⋅⋅⋅+−= νπν csuuA  
PL0 is the power of the LO itself as is incident on the beam splitter, and νL is the LO frequency. A(ν) is the 
Airy-function as is well known for optical resonators. u = r·√rM·√rL is  the roundtrip efficiency for the field 
amplitude within the cavity, s is the optical path length between mixer and LO, and c is the speed of light.  
 

       

 
 
 
 
 
Fig.1   
 

Beam path in a typical  heterodyne setup 

 

Due to the interference the LO power becomes periodically modulated as a function of frequency with a 
free spectral range FSR = c/(2·s). The peak to valley ratio is given by: 
          22 )1(/)1( uuPVR −+=
When assuming a LO-coupling of 10% and a reflection of 20% from mixer and LO, the resulting variation 
between peak and valley is 8%. This is a typical value one can easily verify by experiment when varying 
the distance between LO and mixer or the frequency of the LO.  
The LO standing wave problem is a well known phenomenon, which confirms that there is usually an ap-
preciable amount of reflection involved. But, what is mostly neglected, the consequences for the signal are 
as important. The signal power becomes also reflected within the mixer/LO cavity, and, similar as before, 
one finds for the signal power at the mixer: 
   )(0 SAPtP ν⋅⋅=    
with νS the signal frequency (νS = νL±νIF) and P0 the signal input power as is incident on the beam splitter. 
Consequently, there is also modulation of the detected signal power with frequency, which is due to the 
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effective filter characteristics of the mixer/LO cavity. With the assumed reflectivities above the signal gain 
is also modulated by 8% peak to valley, which is a lot more than one can expect from feedback effects due 
to reflections from the telescope optics or the calibration loads.  
The signal power of a single sideband system, as seen with the calibration loads, is now given by  
         )(,, SCHSysColdHot APtPP ν⋅⋅+=
with PH and PC the thermal emission from the hot- and cold-load, and PSys the noise power of the system 
itself. This means that the y-factor, and the noise temperature accordingly, will depend on intermediate 
frequency like: 
    )(][1)]([)]([)( IFLSysCHSCSysSHSysColdHotS APPPtAPtPAPtPPPy ννννν ±⋅−⋅+≈⋅⋅+⋅⋅+==  
Consequently, y – 1 varies also by 8%, when assuming the same reflectivities as above. 
With a dual sideband mixer the input to the mixer is the sum of the signal inputs from both sidebands, Pl 
in the lower and Pu in the upper sideband. The total power is then equivalent to: 
    IFLlIFLuuullSysulSys APAPtPPPtPP νννννννν −=+=⋅+⋅⋅+=+⋅+= ,)]()([][ 00    
The two Airy-functions give rise to different gain factors for each sideband, which depend on the two sig-
nal frequencies νu and νl. Their values vary with intermediate frequency, but in general differently for the 
two sidebands. If the cavity length s happens to be a multiple of a quarter of the LO wavelength, both 
Airy-functions have identical values at all intermediate frequencies νIF so that both sidebands experience 
identical gain variations. (At this position the LO-power at the mixer is at minimum or maximum.) In this 
particular case the y-factor modulation is maximized. On the other hand, if the cavity length is an odd 
multiple of λLO/8, the ripples from both sidebands cancel each other nearly completely, and the y-factor 
modulation becomes minimized. This indicates that the appearance of the DSB-system noise temperature 
is strongly dependent on the actual LO tuning. 
When observing spectra the problem is more intricate than it might appear, and this is due to the additional 
complication when calibrating a spectrum. A calibrated spectrum is usually evaluated from the ratio of 
two differences consisting of two measurements on sky (signal S and reference R) and two load measure-
ments (hot load H and cold load C).  
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The problem is not visible, if a continuum signal is detected, which contributes equally in both sidebands, 
since the modulations A(ν) in the numerator and denominator cancel each other. This is different when 
observing lines signals in one sideband only, or when measuring S and R from different emitters, as is 
typical during atmospheric studies, while switching between sky and an internal load. Since the power dif-
ferences S-R are different in the two sidebands, the modulating Airy-functions can not cancel, unless they 
are identical in both sidebands. Thus, the expression becomes dependent on intermediate frequency. In 
effect, the derived sideband efficiencies become modulated, and consequently, the calibration becomes 
uncertain. One should note that this problem arises only due to the fact that the calibration signal origi-
nates from both sidebands, but the signal does not. Only, if the two Airy-functions A(νl) and A(νu) are 
identical at all IF-frequencies (or proportional, if the mixer itself has different responsivities in the two 
sidebands), the calibration is unaffected, as is the case for a cavity length equal to a multiple of λLO/4. This 
means that it is best to maximize the ripple on the noise temperature in order to minimize the calibration 
error! Without this precaution, the variation of the sideband sensitivities can make it particularly difficult 
to disentangle complex signals which come from both sidebands, or, in general, to compare the strength of 
different lines with high confidence.  
 

Experimental setup 
The standing wave related effects were investigated using the development models of the WBS (Wide 
Band Spectrometer) and of the band-2 mixer of the HIFI instrument (Heterodyne Instrument for the Far-
Infrared) for the ESA cornerstone mission “Herschel” [1], which both have been fabricated at KOSMA. 
The spectrometer is an acousto-optical spectrometer (AOS), which is based on a recent development of a 
so called "Array-AOS" [2,3]. It provides 4 input bands between 1.6 and 2.6 GHz each at a resolution of 
approximately 1 MHz per pixel. The full coverage of the IF bandwidth of the mixer (4 to 8 GHz) is 
achieved by frequency converters in the IF processor which splits the input band into four identical AOS 
bands. The mixer is a fixed-tuned SIS Nb-AlO-NbTiN waveguide mixer for the range between 600 and 
825 GHz (see e.g. [1]). Coupling of LO power to the mixer is provided by means of a tilted polarizing 
grid. A gas-cell, filled with Formaldehyde (H2CO) at a pressure of some ten mTorr, is positioned between 
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the mixer and two calibration loads (see Fig.2). The rotational molecular transitions are chosen for full 
saturation of the absorption in the center of the lines. Although H2CO has not a very dense rotational spec-
trum it has the advantage that the permanent dipole moment is very high and that it exhibits strong transi-
tions over the full frequency range of the HIFI instrument between 500 GHz and 1.9 THz (see e.g. [5]).  
The primary goal of the experiments was to analyze standing wave problems in a typical heterodyne re-
ceiver setup (see Fig.2). For this the spectrum is observed while detecting the emissions from the two cali-
bration loads through the cell; a hot load at ambient temperature and a cold load at liquid Nitrogen tem-
perature. A chopper wheel behind the cell switches between the loads at a rate of 0.8 Hz. The spectrometer 
is synchronized to the chopper, and for each measurement 100 such cycles are averaged in order to im-
prove the signal to noise ratio. Before starting these integrations a "Zero-measurement"  - Z(νi) -  is per-
formed for an identification of the zero level of the spectrometer itself.  
 

            

 
 
 
 
 
 
 
 
 
Fig.2 Lay-out of the gas-cell test set-up 
 

Four data sets are taken: two with filled cell against hot and cold load, and another two with empty cell. 
When dividing the difference of the first two by the difference of the second one obtains a calibrated 
spectrum with 
        )1(1)( )(

,,
ντγν −−⋅−= eQ lulu

γu,l are the two sideband efficiencies, and we have used: γu+γl+γ0 = 1. γ0 stands for any other response like 
direct detection or harmonic response of the mixer. τ(ν) is the frequency dependent optical depth of the 
line signal. A too small value of τ prohibits a precise determination of the sideband efficiency, since its 
exact value is usually unknown. Therefore, strong absorption lines (or long cells) are required so that the 
exponential vanishes. At the same time, there should be enough spectrometer bandwidth to cover some 
portion in the spectrum, which is free of molecular emission. The calibration accuracy can then be esti-
mated from the resulting value of Q, which is supposed to be unity. Ideally, at sufficient optical depth, one 
obtains a precise value of the sideband efficiencies in the line centers:  
           luluQ ,, 1 γ−=  
With two molecular lines one can determine now each of the sideband efficiencies, and it is clear that the 
sum of both, γu and γl, should be smaller than or equal to unity. How much it deviates depends on the 
amount of undesired response of the mixer. When positioning two saturated lines, one in the upper and the 
other in the lower sideband, at the same IF-frequency, Q should reach a value of 0, unless there is signifi-
cant amount of direct detection. This is an excellent method to determine direct detection of HEBs for ex-
ample. 

Experimental Results    
The first goal during the experiments was to verify the existence of a signal standing wave between mixer 
and LO. For most of the following experimental results the LO coupling to the mixer was chosen fairly 
high (≈ 20%) in order to show the effects very clearly. Fig.3 indicates how significant the gain ripple can 
become. Depicted is the y-factor minus 1, which is derived from a cold and a hot load measurement with 
the empty gas-cell in the optical path. It is evident that a strong standing wave pattern with more than 10% 
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ripple is present. The period of the pattern corresponds exactly to the distance between mixer and LO (~ 
27 cm). The two curves in the figure represent the outcome at two different LO positions separated by a 
quarter of a wavelength, which changes the phase of the pattern by π. This is a perfect confirmation that 
the signal standing wave originates from reflections at the local oscillator. The pattern is superimposed 
with the variation of the system noise temperature across the IF band, therefore there is additional struc-
ture in the spectrum.  

     

 

ig.3  Standing wave pattern visible in the y-

 

en calibrating the spectra, the ripple vanishes, since e same structure is present in both, the signal and 

ng variability of the sideband responses of the mixer is visible in Fig.4. There are two pressure 
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factor during gas-cell measurements 
with empty cell. The LO frequency is 
about 668.5 GHz The two curves repre-
sent the results at two LO positions 
separated by a quarter of the LO wave-
length. 

 
 

Wh th
the calibration measurements. Thus, a uniform baseline is the result (see figures below). But, any change 
of the LO position for example during the time needed for a complete observing cycle (signal, reference, 
hot, and cold load) will make parts of it visible. From this it becomes evident that the stability of the LO 
position and frequency is decisive for the appearance of ripple structures in the spectra. In consequence, 
the stability of the complete system as seen with Allan variance tests for example becomes negatively af-
fected. 
The stro
broadened molecular lines, one in each sideband, which are rather different in amplitude indicating some 
significant differences in sideband sensitivity of the mixer itself. Plotted are the lines seen for three differ-
ent lengths of the mixer/LO cavity, which has also direct consequences for the LO power coupled to the 
mixer.  In order to compensate  for the changes  in noise power output  the mixer bias is adjusted for 
similar operating conditions. The amplitude of the lines varies significantly while the sum of the two side-
band efficiencies γu and γl is not even close to “1”, as would be expected. The result is a clear proof  that 
there is large uncertainty  for the sideband  response which is  obviously caused by different influence of 
the standing wave on the two sideband efficiencies. In the presented case the amplitudes of the two lines 
vary by as much as 20%. Similar observations were made when tuning the LO-frequency. 

  
Fig.4 d (righ  Left: Line pair at 662.209 GHz – lower sideban t line) – and 674.809 GHz – upper sideband (leftline) – 

ent on LO tuning. 

observed at different LO positions. Note that the numbers provided in the plot represent the values of 1-γ.  
Right: Same line pair (positions are reversed) at different LO frequencies. The line amplitudes appear depend-
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In ord
appea me intermediate frequency. The result is shown in Fig.5. Since the value of γu+γl 

er to verify that the setup is not responsible for the differences, we tuned the LO so that the two lines 
r at exactly the sa

should be close to unity, a value near zero is expected at the peak of the combined lines. The  deviation 
from this value is a good measure for the accuracy of the measurements. Part of the remaining 0.8 % sig-
nal at line center may be due to some minor amount of direct detection of the mixer, but a small contribu-
tion due to incomplete saturation is also possible (see Eq.(5)). In general one can conclude that the overall 
accuracy of the efficiency measurements is better than 1%, and that the effects on the calibration are defi-
nitely real.*- 
  

 

 

 
Fig.5  Mixer response with the two lines of Fig.4 at 

identical intermediate frequency. The total re-

 

clusions    
firmed that a major portion of baseline ripple in the spectra of heterodyne re-

tributed to standing waves in the mixer/LO cavity. The amplitude of the ripple structures 

band. 

ed in front of the LO, 

sponse is 99.2%, which is very close to the 
theoretical value. This verifies that the lines 
seen in Fig.4 and 5 are fully saturated, and 
that the large difference in response between 
the sidebands is real and most likely caused 
by the mixer itself 

Con
Our observations have con
ceivers can be at
depends directly on the coupling efficiency of the LO into the signal path. If one can afford to waste huge 
amounts of LO-power, minimum coupling should be used. Nevertheless, a coupling of 1% (r=0.01) causes 
still ripples in the range of 1% peak to valley. The situation is slightly worse when using a grating as beam 
splitter, since the polarization effects increase the problems. Much more troublesome is a Martin-Puplett 
diplexer! Exactly in IF-band center, where the diplexer should have maximum signal transmission, is no 
reflection of signal to the LO. But at the band-edges, if one octave of IF-band is used, the uncertainty of 
the sideband calibration can exceed ±20%, when using the same reflection coefficients for mixer and LO 
as above. This is due to the fact that a Martin-Puplett provides 25% reflectivity for the signal towards the 
LO at the band edges. The problem is rather difficult to handle, since the amplitude of the efficiency 
modulation is now dependent on IF-frequency, so that it is tricky to correct for during data analysis. 
A ripple-free system would require that the calibration is also done with single sideband calibration loads. 
A single sideband filter helps, but it is important to implement a cold termination of the reflected side
This removes the ripple on the sideband efficiency because one calibrates now correctly with load signal 
from one sideband only, but the ripple on the system noise temperature remains. With a warm termination 
the situation deteriorates, because the radiation from a warm termination of the sideband filter co-adds to 
the signal of the calibration loads resulting in very different contributions from both sidebands. Good 
experience is made with sub-harmonically pumped mixers, because there is no possibility for the signal 
reaching the LO. Another and very practical way is to use a Fabry-Perot type diplexer, which does not 
allow any signal coupling to the LO (see e.g. [6]). But, similar as with a Martin-Puplett, the LO has 
maximum standing wave dependent on the coupling efficiency of the Fabry-Perot.  
The LO standing wave itself is difficult to remove. A quarter-wave plate together with a linear polarizer 
can be useful, since it acts as an optical isolator for the reflected power. If it is plac
the signal and LO standing wave are both suppressed, but half of the LO power is wasted. Unfortunately, 
with simple quarter-wave plates or an equivalent grid/mirror arrangement the isolation is frequency de-
pendent. One therefore has no full isolation at all signal frequencies. But isolation in the range of at least 
15 dB is always possible (see e.g. [7]). It might be a bit tedious to tune the isolator for each new LO fre-
quency, but it is probably worthwhile. An alternative method is to use a path-length modulator in front of 
the mixer or LO. If the modulation is fast enough and has sufficient amplitude, the ripple is effectively 
averaged out. The introduced LO-power modulation might be nasty, but, when synchronizing sampling 
time with modulation frequency, it should be possible to remove those effects. If a polarizing grid or a 
Martin-Puplett is used for LO-coupling, one has to be careful when using polarizing components for iso-
lation. It requires some additional analysis to do it properly. 
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