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ABSTRACT 
 

We describe the performance of a direct detector that uses the high mobility 2D electron gas (2DEG) formed at 
the AlGaAs/GaAs interface as a frequency selective absorber. The 2DEG mesa-structure is etched to form a planar 
periodic structure with resonant absorption properties in the submm - THz region. Electrons in the 2DEG are heated 
by incoming radiation above the lattice temperature and the temperature of the hot electrons is measured by 
Superconducting - 2DEG - Superconducting (S-2DEG-S) tunnel junctions. The estimated noise equivalent power  
for such a detector at 100 mK is in order of 10-18 W/Hz1/2. In this paper we present the spectral measurements and 
simulated results of absorption properties at 4.2 K for a resonant mesa geometry. The thermal conductance and time 
constant of 2D electrons are studied at 450 mK-4.2 K. We measure an electron-phonon conductance on the order of 
10-17 W/K per electron at 450 mK which gives a low value of heat conductance 2DEG relative to normal metal 
absorbers due to the low 2DEG electron density. These devices have a combination of sensitivity and speed which 
makes them possible candidates for the components in future astrophysical THz instruments.  

1. INTRODUCTION 
The development of high sensitivity direct detectors for mm-Thz radio-astronomy has been a field of active 

interest for a few decades. Transition Edge Sensors (TES) [1], normal metal - insulator - superconducor tunnel 
junctions (NIS) [2, 3] and cold electron bolometers (CEB) [4, 5, 6, 7] are some of the technologies which have 
achieved extremely low value of NEP. Microbolometers like NIS and CEB detectors make use of the thermal 
isolation between electrons and phonons in normal metal absorbers with submicron dimensions to detect THz 
radiation. The two-dimensional electron gas in AlGaAs/GaAs heterojunctions at 4.2 K and lower temperatures is 
weakly coupled to the lattice and the hot electron effect in the 2DEG can also be used to make a sensitive bolometric 
detector in THz range. The 2DEG electron mobility (μ) and density (ns) can be set at optimal values during the 
semiconductor heterostructure’s growth process so that a 2DEG will have up to 105 times lower thermal conductivity 

per unit area than a normal metal absorber with the same DC 
resistance. The lower thermal conductivity allows detector designs 
of greater than sub-micron size, facilitating construction. These 
advantages make 2DEG detectors good candidates for filled arrays 
of ultra-sensitive bolometers with free-space absorbers. 

ron 
temperature of the 2D electrons.  

2. SAMPLES AND EXPERIME
The heterostructures were grown by molecul

primarily used material from two growth runs, on
of Sheffield (S8).  

In this paper we present low temperature transport 
measurements of 2DEG properties (thermal and electrical) and the 
design and measurements of a periodic absorber structure. We 
incorporate this absorber into a simple 2DEG HEB where the 
electron temperature is determined from the DC resistance of the 
2DEG. We measure the sensitivity of this device at 4.2 K and 
compare it with estimates from DC IV curves. The sensitivity of the 
2DEG HEB is limited by the slope of the resistance vs. temperature 
curve for the 2DEG. Finally we analyze a proposed detector 

consisting of a 2DEG as a radiation absorber and S-2DEG tunneling contacts as a thermometer to measure elect

Figure 1:  Heterostructure 

NTAL TECHNIQUES 
ar - beam epitaxy and have the layer structure shown in fig. 1. We 
e from Nottingham University (NU03) and one from the University 
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The fabrication process for the devices included the following 
steps. First, mesas were formed by wet etching with 
H2SO4/H2O2/H2O etch solution. Then ohmic contacts were 
deposited by thermal evaporation of AuGe-Ni-Au and patterned in 
a "lift-off" process followed by thermal annealing in a N2 gas 
atmosphere at ≈ 400oC for 1 minute. We fabricated a variety of 
me terial. Hall bar 

 of 50%. It covered an area of 1x1 
mm  and is shown in fig. 2. For optical tests of HEB detector with 

e meander absorber we used a simple setup with a blackbody radiation source with temperature Tbb = 800 K. The 
detector was mounted in an integrating cavity behind a Win  

 block 30 ut-off 
77 K s
r
e

 

from Johnson and phonon noise [8]. Calculated 
SV ≈ 270V/W and NEP ≈ 3x10-11W/Hz1/2. This 

 the pe efficiency o tor is about 
he time constant of the detector (τ ) is estimated using a 
ed value for t  capacity of the electrons Ce and the 
d Gth as τ  show the rformance 

of the s tector opera 0 mK we e respons nd time ng the DC 
electrical characterisation. E  and theor a or differe  t perature  i  table 2.  

able 1:Experimental data of the DC electrical and thermal transport. 

Sample (1/R)dR/dT K-1 per (1/R)dR/dT, -1 per Gth , W/K Gth , W/K 

sa geometries from the heterostructure wafer ma
devices were used to measure the thermal and electrical properties 
of the 2DEG. The mobility and electron density of 2D electrons at 
4.2 K were found by measuring of Shubnikov-de-Haas oscillations 
period and amplitude with constant applied electrical power. For 
the heterostructures used in this study we measured μ =1.6 x 106 
cm2/Vs and ns = 1.8 1011 cm-2. 

The absorber/detector design consisted of a meander geometry 
with ohmic contacts at either end. The path of the meander was 
20 μm wide with a filling factor

2

Figure 2: Optical microscope picture of the 
meander type detector. 

th
ston horn and thermally mounted on the cold stage of an 
0 K thermal radiation low-pass mesh filters with ccryostat at the base temperature close to 4.2 K. To

frequencies of ≈ 9 THz were placed at the 4 K and 
shown in fig. 3. The power from the blackbody sou
in front of the detector. For the spectral measurem
Transform Spectrometer.  

tages. The detector block with the horn inside the cryostat is 
ce was estimated to be Ps ≈ 3.1 nW in the bandwidth of the filter 
nts, the detector was placed at the output of a scanning Fourier 

3. EXPERIMENT AND DISCUSSION 
We characterized the electrical and thermal properties of 

the 2DEG meander from the R(T) and using IV curves 
measured at different base temperatures. We obtained values 
for (1/R)dR/dT and Gth at 4.2 K and 450 mK in agreement with 
the values measured in the Hall bars. These parameters are 
listed in table 1. 

Optical tests of the meander-type detector gave us the 
results shown in fig. 4. The maximum value of SV ≈ 233V/W 
occurred at bias current Ib = 10μA and NEP ≈ 8.9x10-11W/Hz1/2. 
An electical NEP can be calculated from DC measurements 
using SV=Ib(dR/dT)/Gth and taking into account that noise has 
contribution 
values were 
indicates that
30%. T

ak optical f the detec

calculat he heat
measure

estimate h
= Ce/Gth. To
ivity, NE

predicted pe
constant usiame de ted at T= 54

xperimental
 t

etical dat  f
P a

nt detector em s is given n

Figu re of the
Winston horn inside the cryos

re 3:Pictu  detector block with 
tat. 

T

square square 
K

 4.2 K 450 mK 450 4.2 K mK 
NU03 75.2 x 10-3 3.2 x 10-3  1.1 x 1.5 x 10-15 10-17 

S8 46.9 x 10-3 3.1 x 10-3 -14 1.2 x4.14 x 10  10-16 
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Table 2:Meander detector performance DC biased at Ib = 10 μA 

W 1/2T, K SV, V/  NEP, W/Hz  τ, ns 

8.9 x 10-11 0.94 experim. 4.2 K 233 
3 x 10-11 ≈1 model 4.2 K 270 

3 2.5 x 10-14 ≈100 model 450 mK 6 x 10
 

on the frequency of 
the in own in fig. 5. The selectivity of th put 
sig  explained in terms of resonant ab on 
in periodic grid structures [9, 10]. Let us briefly discuss the model 

 
are shown on fig. 5 as well as corresponding equivalent circuits. 
The reactance an inductive grid will be [9]:  

 
Spectral measurements of the detector response have been 

made using a Fourier Transform spectrometer. The maximum 
detector response was in a narrow frequency range close to 1 THz. 
The dependance of the detector output signal 

Figure 4:Responsivity and NEP for the meander 
type HEB detector. 

cident radiation is sh e in
nal frequency can be sorpti

behind the resonance properties of periodic grid structures. The 
basic structures include inductive and capacitive gratings and they

 of 
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where Z0 = 377 Ohm is the free space impedance, λ is the free 
space wavelength. Similarily, the reactance of a capacitive grid 
will be:  
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where n1 and  n2 are dielectrics refractive indices. Here we assume 
the equivalent electric circuit with capacitance and inductance in 
series. For a real structure one should also include resistance R0 in 
the above model (see fig. 7). The transmittance through the shunted 
circuit is given by [9]: 

( ) ( )( )
( )( ) ( ) ( )

Figure 5: FTS spectrum of the meander 
detector. 
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here, X = Xl +Xc is the full reactance of the circuit shown on fig. 7. 
In general this circuit will have a resonant absorption feature at a 
wavelength close to the periodicity of the structure λ0 ≈ g in free 
space n1 = n2 = 1. But in the case of a 2DEG situated close to the 
surface of a GaAs with ε =12.9 the absorption resonance will shift 
to longer wavelengths λ ≈ 300 μm. Using equations (1), (2) and 
circuit simulator we obtained absorption spectrum shown in fig. 8 
for radiation at normal incidence to the device. The projected 
pattern from the meander will appear smaller at larger incidence 
angles thereby spreading the resonant absorption towards higher 
frequencies.  

A high performance detector based on a high mobility 2DEG 
requires the separation of the 2DEG absorber and the electron 
temperature thermometer. Using the 2DEG resistance as an 
indicator of the electron temperature [11, 12] limits both the 

Figure 6:(a) Inducive and (b) capacitive strip 
periodic structures and their equivalent electric 
circuits. 
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responsivity and the NEP due to weak R(T) dependence of the 2DEG 
at liquid 4He temperatures. A 2DEG detector with a higher dR/dTe 
would have the advantages of both a low Gth absorber and high 
responsivity thermometer. We propose to use a 2DEG-
Superconductor junction as a thermometer to read out  Te similar to 
Rowell and Tsui [13]. Tunnel junctions could be made by forming 
Schottky barriers in the interface between GaAs and superconducting 
contacts. We simulated a detector which has a 2DEG as a radiation 
absorber and two aluminum superconducting contacts with tunnel 
barriers as a thermometer. According to [2, 3] the tunneling current 
through the contact is given by:  

( )

Figure7:Equivalent circuit for meander type 
detector 
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where RN is the normal state resistance of the junction, Δ is the 
energy gap of the superconductor and V is the bias volta r (Δ-
eV) >kBT  the above equation simplifies to:  

−Δ−

with

ge. Fo

                           TkeV BeII /)(
0≈                    (5) 

 ( ) TkeRI BN Δ= − π22 1
0

biased such that the 

. The junction can be current-

esponsivity dV/dT is 
Figure 8: Simulated absorption spectrum 

temperature r
( ) ( )IekB ln/ I/0−≈  [2, 3]. 

fig. 9. Values of R Al = 0.3
used [

Calculated IV curves for different temperatures are shown in 
N =5 kOhm and 2Δ(0) 48 meV have been 

omputed IV curves ate the detector 

 

4. CONCLUSION 
We report the experimental results of spectral measu orber, electrical and thermal 

propertie
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