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Abstract—We present a high-power frequency tripler for 100 
GHz. The tripler - that is based on a single HBV diode - produces 
>200 mW of output power with a 3-dB bandwidth of 6%. This is 
the highest output power ever recorded for an HBV based 
multiplier irrespective of output frequency. The module features 
an ultra-compact waveguide block design and a microstrip 
matching circuit on high-thermal-conductivity AlN to improve 
the power handling capability. 
 

Index Terms—Heterostructure Barrier Varactor, HBV, 
multiplier, high power, aluminium nitride, THz source 
 

I. INTRODUCTION 
OST of the systems operating at THz frequencies today 
use single pixel receivers. There is however a lot of 

work invested to expand these systems to arrays of receivers, 
both to improve the scanning speed for radio telescopes and to 
do real-time imaging in other applications. As the number of 
pixels increase the demand for local oscillator power will 
increase – which is the issue we address in this work. 

The Heterostructure Barrier Varactor (HBV) is a device 
well suited to produce high power levels at THz frequencies. 
The fact that several varactors can be stacked on top of each 
other during epitaxy allows for fabrication of diodes with high 
power handling capability while keeping the devices 
electrically small. In this work we present a circuit that can 
handle >1 W of input power with a single diode. Another 
feature that favors the use of HBVs in THz frequency 
multipliers is that the devices have a symmetric C-V 
characteristic which will produce only odd harmonics of the 
fundamental frequency; this simplifies the circuit design for 
higher order multipliers (x3, x5). Both triplers and quintuplers 
based on HBV diodes have been demonstrated at low THz 
frequencies by different groups [1-6]. In this work we present 
state-of-the-art results from a high output power frequency 
tripler at 111 GHz. Initially we describe the design and 
fabrication of the tripler which is followed by a report of the 
measurement results. 

 

II. HIGH POWER HBV DIODES 
We have fabricated HBV diodes out of InGaAs/InAlAs/ 

AlAs on a InP S.I substrate. This material system offers high 
electron mobility (InGaAs) as well as a high conduction band 
offset in the varactor - resulting in low leakage current. The 
epitaxy consists of three stacked diode structures, and the 
diode is then fabricated with four series connected mesas (fig 

1). This diode geometry gives a total of twelve varactor 
barriers, with a DC breakdown voltage of >40 V (fig 2). 
 

 

 

III. MULTIPLIER DESIGN 
The HBV diode is flip-chip soldered onto a microstrip 

circuit that contains the impedance matching elements and 
waveguide probes. The microstrip circuit is then mounted in a 
waveguide block with waveguide input/output interfaces 
(WR22/WR10). One of the ambitions of the work was to 
make a design that was reliable and reproducible – therefore 
care was taken to minimize the number of manual steps in the 
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Fig. 1.  SEM image of a high-power HBV diode on chip. 

Fig. 2.  DC characteristics of a high-power HBV diode with a mesa area 
of 1000 µm2. 
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fabrication and mounting. No DC electrical connection 
between the microstrip circuit and the waveguide block was 
therefore used, and a new layout of the block was introduced 
as described below.  

Fig. 4.  The microstrip circuit showing the different matching elements 
and the input/output probes. A. Waveguide block 

The waveguide block was machined in brass and 
electroplated with 2 µm of gold. The block is split in a plane 
perpendicular to the input- and output waveguides as seen in 
figure 3. This layout results in a very compact circular block 
only 6 mm thick and 30 mm in diameter. 

 

 
 
The two block halves are milled from one side only which 

gives simple and accurate machining. The microstrip matching 
circuit – including the HBV diode - is located in a channel 
connecting the input- and output waveguides. There are no 
mechanical tuners in this design. 

 

B. Microstrip circuit 
The microstrip circuit was fabricated on an AlN substrate to 

improve the power handling capability (AlN has a high 
thermal conductivity ~ 170 W/mK). No DC connection 
between the waveguide block and the circuit was used since 
simplicity was one of the design objectives. This also means 
that open waveguide probes were used both on the input and 
on the output side.  

The optimum embedding impedances were extracted from 
harmonic balance simulations using the Chalmers HBV device 
model [7]. These impedances were then implemented using a 
quarter wave transformer and an inductive line for the 
fundamental frequency, and an open-stub stop-filter in 
combination with the output probe for the third harmonic (fig 
4). 

 No power is generated at the second harmonic because of the 
symmetric capacitance-voltage characteristics of the HBV 
diode, which means that this harmonic does not have to be 
considered in the circuit design. The microstrip circuit was 
mounted in the waveguide block with glue. 
 

 
Fig. 3.  One half of the waveguide block with a microstrip circuit 
mounted. 

IV. RESULTS 
The input signal to the multiplier was provided by a 

HP83650B frequency synthesizer followed by a Spacek power 
amplifier. To avoid having power reflected back from the 
multiplier to the power amplifier a waveguide isolator was 
inserted as shown in figure 5. 

 

 
 
The output power was measured using an Erickson PM2 

power meter. 
In figure 6 the output power is shown as a function of 

frequency at an input power of 1 W. A maximum conversion 
efficiency of 20% is measured at 111 GHz output frequency 
and the 3-dB bandwidth is 6%. 

In figure 7 the output power is plotted as a function of input 
power showing a maximum output power of 240 mW. 

 
 

 
Fig. 5.  Measurement setup showing power amplifier, isolator and 
multiplier. 

Multiplier
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Fig. 7.  Output power as a function input power. The maximum output 
power is 240 mW. 

 

 

V. CONCLUSION 
A high power frequency tripler to 111 GHz using a single 

HBV diode has been designed and fabricated. 240 mW of 
output power and a conversion efficiency of 20% have been 
measured. The fixed-tuned 3-dB bandwidth was 6%. A new 
design of the waveguide block has been presented that makes 
the machining of the block simple and reliable. The microstrip 
circuits are also designed for reliable mounting with no DC 
connection to the block. 
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