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Abstract — Low noise amplifier (LNA) chains at 100GHz
were constructed to be used as highly sensitive detectors in
the development of the Haystack Ultra-wideband Satellite
Imaging Radar (HUSIR). Three separately packaged
MMICs are combined to provide a highly sensitive
millimeter-wave detector. The LNA chip is a 0.1 micron InP
based chip [1]. This is followed by 0.1 micron GaAs based
driver and power amplifier MMICs [2]. This combination
provides more than 50dB of gain over a frequency range of
90 to 100GHz with 50K noise temperature when measured at
20K ambient temperature. This chain provides enhanced
functionality for the Haystack Ultra-wideband Satellite
Imaging Radar (HUSIR).

Index Terms — ground based radar, high gain amplifier,
direct detector, millimeter waves, InP HEMT LNA, high
power GaAs MMICs.

I. INTRODUCTION

The primary function of HUSIR will be to track and
image satellites for the U.S. Space Command. To
improve the imaging capabilities of HUSIR, wideband
and sensitive W-band receivers are required. One of the
key-components would be W-band LNAs optimized for
these receivers, when cooled to 20K.

The W-band MMIC LNAs [1] and MMIC driver
amplifiers [2] that have been used in this study were
originally developed for ground-based and space-born
radio astronomy. In this study those LNAs and amplifiers
were utilized to construct sensitive receiver chains with
high gain and low noise temperature. Four LNA chains
with comparable performance were characterized. The
measured results are presented and guidelines for a safe
RF input power range are provided.

II. LNA CHAINS

The LNA chains were tested in a cryostat capable of
reaching temperatures below 20K by using two Watts
cooling power generated from a closed cycle helium
refrigerator. The input and output of the chains were
connected to calibrated WR-10 waveguides which include
12.7 micrometer thick vacuum windows made of Mylar.
A U-shaped bracket made of copper provided optimal
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thermal contact to the cold-head. An active temperature
controller using calibrated Si-diodes was utilized to keep
the temperature variation on the LNA below 0.1K. In
order to minimize the thermal conduction of the bias
connections, seven duo-twist phosphor bronze wires from
Lake Shore, each with 0.127mm diameter and 30cm
length, were thermally connected to the 70K stage of the
cold-head.

Figure 1 shows a complete LNA chain before it was
installed into the cryostat. The noise temperature of the
LNA MMIC was less than 50K with more than 20dB gain
in the targeted frequency band from 92 to 100GHz at 20K
operation temperature.
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Figure 1: On the left side the input waveguide was attached to
the LNA, followed by a WR-10 isolator and a very narrow
banded waveguide filter (both made by Millitech). A driver
and power amplifier stage provided sufficient system gain. A
WR-10 isolator was attached on the output (right side). The
total dimensions of the assembled chain were 20x20x160 mm.

A compact and low loss WR-10 isolator was
implemented in order to reduce the impedance mismatch
between the output of the LNA and the narrow-band WR-
10 waveguide filter. Impedance matching at the output
was achieved by a second isolator. The bandwidth of the
WR-10 filter was designed to cover 92 to 100GHz with
80dB rejection outside the band (Figure 2). The cut-off
condition of the waveguide at low frequencies naturally
provides for the rejection, but at high frequencies it was
necessary to implement a Chebyshev filter with 80dB
rejection out of band. Additional rejection at frequencies
greater than 103GHz was provided by the roll-off slope of
1.1dB/GHz from the power amplifier when integrated in
the LNA chain. Impedance matching at the output was
achieved by a second isolator. In Figure 2 the band-pass
of the prototype filter is displayed. It was initially tuned
too low at room temperature. When the filter was cooled
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to 20K the band shifted upward by 0.5GHz. In order to
properly adjust the bandwidth of the filter an
appropriately designed shim was introduced between the
two block halves. When shaving off or adding material
between the split blocks the first-order effect was that the
band-pass could be adjusted and the second-order effect
was that the bandwidth could be adjusted.
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Figure 2: Measured band-pass characteristic of the prototype
w/g filter at 300K and at 20K. The total power was
determined with a calorimeter from Neal Erickson [3]
(0.1microwatt to 200mW) and a vector network analyzer.

III. RF INPUT POWER LEVEL

A major concern in radar applications, aside from
reliability [4, 5], is that high RF power may leak into the
front-end of the LNA chain. Therefore the minimum RF
level that would cause damage needs to be determined.
An indirect method is to observe the MMIC for changes in
the DC bias conditions after the RF is removed. In this
study, three different LNA chips from the same wafer
were exposed to excessive RF powers at 20K in order to
determine the maximum safe RF input power. The RF
power was increased in steps and applied for at least five
minutes to allow thermal heating to stabilize. Some of the
measured DC bias conditions under increasingly higher
applied RF powers are presented in Figure 3. At each
increment, the bias conditions were compared to the initial
recorded values without applied RF in order to check for
permanent damage.

The biases of the LNA were separated as follows:
Each LNA MMIC contained 4 FET stages each with two
2x20 micrometer fingers. The first and second stages
were biased with a single gate power supply (Gate 1) and
the third and forth stages were biased with an independent
supply (Gate 2). All of the drains were biased together.
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Figure 3: Measured bias conditions while RF was applied.
Displayed are the changes in gate 1 bias current and drain
current on one of the three LNAs when exposed to high RF
input power. Permanent damage was observed above 40mW
levels. No changes on gate 2 were observed.

The effect of high RF input power was detected on
the drain current much earlier than at the gate 1 current.
This is a result of small changes in the gate bias condition
causing large changes of the drain current. The change in
drain current at 0.5mA was in most cases nearly two times
that of the initially measured bias conditions without RF
applied. At these high RF levels the LNA did not
contribute to the gain anymore because it was saturated
already at a fraction of a microwatt. A maximum drain
current was observed at RF levels around 10mW. When
the RF power was increased above 10mW the current
decreased by 10%. At RF levels above 40mW, permanent
changes in the bias parameter were detected. The slope of
the gate 1 current remained close to zero until the RF
reached 1mW. Above this value the gate current
increased nearly monotonically to more than a factor of 2
from the initial value. However, no change on gate 2 was
observed down to the microampere level. This indicates
that mostly the first two stages of the LNA were impacted
by the applied RF.

The degradation of noise temperature was measured
on one LNA only. It was confirmed that the noise
temperature of the LNA degraded in concert with the
changes in DC condition at levels above 40mW RF input
power.

Additionally it was investigated whether RF power
applied to the LNA at zero bias voltages would impose
risk to the device. The induced currents for this condition
were 240uA on gate 1 and 1mA on the drain at 20mW
input power. The nominal bias conditions were used as
the base-line to compare the actual measurements at each
increment of RF power. No change was detected when a
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RF level of 20mW was applied over 48 hours. In
addition, the bias conditions were verified at 0.1mW,
0.2mW, and 0.3mW output power. Any change in input
coupling on the first FET would have indicated a change
from the initial bias values. However no changes in bias
were detected.

The test confirmed that the LNA device would
survive in an emergency “bias-supply-off” state, probably
due to mismatching of the incident power when no bias
voltage is applied. These results show that the LNA is
much more robust than anticipated and that the incident
RF power can be monitored even under saturation by
monitoring the drain current for input power levels below
0.5mW and by the gate current for higher RF levels.
These currents could be used as indicators of the applied
power level even if the LNA is saturated.

In order to budget sufficient margin, it is not
recommended to expose the LNA to RF levels above
10mW when biased at nominal conditions, assuming that
6dB de-rating is sufficient to maximize the LNAs life
time. At this RF level the calculated power per
micrometer gate  length  (2x20micrometer)  was
250uW/um. Further investigations need to be performed
to determine the effect of pulsed RF power to the LNA.

IV. STATE-OF-THE-ART PERFORMANCE

Optimal performance of the LNA chains was
obtained by trading-off noise temperature, gain, 1dB
compression point, and DC power consumption. A
number of iterations on the combination of LNA, driver,
and power amplifier were performed to satisfy most of the
trade-off conditions. = The performance of the final
configuration of the four LNA chains was measured and
the results are displayed in Figures 4-6.

The driver and power amplifier drains dominated the
power consumption. Thermal dissipation was minimized
at the expense of the 1dB compression and the gain. In
this case the gate voltage was reduced until the amplifiers
became current starved where gain and compression are a
rapid function of gate voltage which is called the region of
pinch-off. Above this point the gain and compression
improved marginally with increasing gate. This is the
most efficient operation point for these amplifiers but the
1dB compression point was reduced by about 2dB and the
gain by about 1.5dB. However, the thermal dissipation
was reduced by 50% which was very important to reduce
the required cooling power. The maximum allotted power
dissipation was 2W but the power dissipation was 1W
under nominal operation.

Optimum gain (~22dB) of the LNA was observed to
occur at Vq4= 0.9V. The contribution to the drain current
from Gate 1 was 4-7mA and for Gate 2 it was 3-5mA
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when optimized for noise temperature and gain. Both
gates had similar voltages when optimized. The driver
amplifier (~15dB) had its best gain between V4 = 2.2 and
2.6V at 20K. Increasing the drain current by applying
positive gate voltage improved the gain slightly in the 92-
100GHz range. While the best performance was observed
at the maximum current tested, it should be noted that the
gain difference between 200mA and 300mA was less than
0.5dB. The power amplifier (~22dB) had its best gain at
2.2V at 20K. Increasing the drain current by applying
positive gate voltage increased the gain until about
320mA was reached. There was less than 0.5dB loss in
gain when the current was reduced to 250mA.
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Figure 4: Measured gain of four LNA chains.
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Figure 5: Measured noise temperature of four LNA chains.

In figure 5 the overall noise temperature is
provided. The LNA noise dominates the noise
temperature of the LNA chain. The driver and the power
amplifier contributed approx. 10% to the noise
temperature due to their noise figure of roughly 8dB.
Excess noise had been observed in similar amplifiers
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when biased higher than 3V with maximum rated current
on the drain.

The 1dB compression point (see Figure 6) was
limited by either the driver or the power amplifier
depending on their operation point. The compression
point was always increased with increasing drain voltage.
In this study the best compression was at 3V for the driver
and 3.2V for the power amplifier. Additionally, more
drain current resulted in a slow increase in compression
point. Typically the improvement was 0.2dB from the
nominal current to the current limit. The measured 1dB
compression point was observed to be between 10 to
16dBm.
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Figure 6: Measured 1dB compression point of four LNA
chains at 96GHz.

V. CONCLUSION

State-of-the-art MMICs that have been primarily
designed and developed for astrophysics applications have
been utilized to develop a wide-band low-noise
millimeter-wave detector for radar. By optimizing low-
noise and high-gain a compact chain that provides more
than 50dB of gain with 50K of noise temperature has been
demonstrated (at 20K). The 1dB compression point of a
nominal chain is measured to be between 10 to 16dBm.
Safe RF and operating conditions for these chains have
been investigated for their utilization in radar applications.
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