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Abstract:  We have developed a membrane-tip wafer probe for on-wafer measurements of 
passive structures, semiconductor devices and amplifiers in the 220 to 325 GHz WR-3 
waveguide band.  The probe provides the connection between an Oleson Microwave Labs 
Vector Network Analyzer (VNA) mm-wave extender head and on-wafer ground-signal-
ground contacts.  The probe has a section of WR-3 waveguide with a standard flange, a 
waveguide-to-coax transition with provisions for adjustment of both the E-field launch and 
back short.  From the waveguide-to-coax transition, a short length of UT-013 coax connects 
to a thin-film membrane that includes a coax-to-microstrip transition and three wafer contacts 
manufactured photolithograpically using Cascade Microtech’s thin-film process.  The wafer 
contacts use the same mechanical structure and metallurgy as Cascade’s Pyramid probe 
series, and are rated for millions of touchdowns with contact resistance of a few tens of 
milliohms even on aluminum pads. 
 
Initial measurements on a pair of WR-3 probes and a standard calibration substrate with 
Cascade’s 140 to 220 GHz VNA system suggest that loss is dominated by the length of 
waveguide between the coax-to-waveguide transition and the Oleson Microwave Lab mm-
wave extender head.  Measurements on the WR-5 band VNA are limited to the lower third of 
the WR-3 band.  A second set of probes was built using significantly shorter waveguide 
sections.  The original probes and short waveguide probes were then measured on the Jet 
Propulsion Labs WR-3 VNA system [1,2].  Loss through the longer probes was more than 5 
dB from waveguide flange to probe tip, and loss through the short waveguide probes was 
near 2.5 dB for most of the WR-3 band, with increased loss above 300 GHz.  Increased loss 
above 300 GHz is apparently due to poor contact with the back short during the 
measurements for the probe we tested. 
 
Since the waveguide probes have electrically floating center contacts on the Ground-Signal-
Ground membrane, we have also developed integrated bias Ts.  To date, in-band 
performance of the bias Ts has only been measured on the WR-5 VNA, and the out-of-band 
performance measured using a DC to 110 GHz VNA. 
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Introduction to on-wafer probing of sub-mm wave circuits 
 
Figure 1 illustrates how a pair of wafer probes is used to test a circuit.  Figure 2 is a close-up 
sketch showing the parts of a wafer probe, and figure 3 is a photograph of a WR5 probe 
showing scale. 

 

 
           On Wafer Measurement using OML VNA Extenders and Wafer Probes 
 
                                                         Figure 1 
 
 

 
 

                        Probe Detail Sketch                          WR05 Probe Waveguide Flange 
 
                                  Figure 2                                                       Figure 3 
 
   Membrane Tip measurements and fabrication 

 
The membrane probe tip and coax-to-membrane attachment  were analyzed with basic 
theory and studied using a Modulated Scatterer Near-Field measurement system on X50 
Scale Model at 6 GHz [3,4].  The measurements revealed high E-fields near the ground 
attachments to the outer coax connector that were reduced by reshaping the membrane.  
Figure 4 is a photograph of the X50 scale model of the original membrane.  Figure 5 is a 
photograph of the top and bottom side of the thin-film membrane contact structure with 
50 micron contact pitch.  Note that the final membrane is shorter than the model. The 
membrane is fabricated in Cascade’s thin-film process.  The large structure on top with 
identification numbers is a handle that is removed after the tip is attached. 
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X50 Scale Model of 325 GHz Wafer Probe Tip 
 
                               Figure 4 
 
The Ground-Signal-Ground contacts and the metallization for attachment to the UT013 coax 
center and outer conductor may be seen clearly on the bottom of the membrane structures. 
 

 
                     Top and Bottom Views of the Membrane Contact Structure 
 

                                                         Figure 5 
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One-Port Measurements 
 
Four 325 GHz wafer probes were assembled at Cascade Microtech and measured on the JPL 
325 GHz Network Analyzer.  A waveguide cal was performed with the flange that connects 
to the probe as the reference plane.  The first measurements were One-Port measurements, in 
which S11 is measured with the probe on a short, open and load.  The round-trip loss through 
the probe can then be calculated from the S11 measurements.  Two of the probes included 
bias Ts, and two used short waveguide sections.  At 1mm wavelength, waveguide has 
considerable loss—on the order of 1 dB loss in 3 cm.  Figures 6 and 7 show that the loss of a 
probe with 3 cm long waveguide is significantly lower than the loss of the probe with 7 cm 
long waveguide.  Unfortunately, the back short on the waveguide-to-coax transition of the 
probe in figure 6 was not making good contact on one corner, and this resulted in degraded 
performance at high frequency. 
 
 

 
                               WR-03 Wafer Probe with 7 cm Long Waveguide 
 
                                                              Figure 6 
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                                WR-03 Wafer Probe with 3 cm Long Waveguide 
 
                                                              Figure 7 

 
 
 
Two Port Measurements 
 
After the One-Port measurements were complete, we performed a two-port calibration of the 
325 GHz Network Analyzer system and attempted a two-port measurement using the two 
probes measured in figures 6 and 7 and an standard substrate.  The calibration did not hold 
during these measurements, but the raw data was stored.  A stable cal and useful 
measurements were later obtained by processing the raw data using WinCal.  Figure 8 shows 
the set of four S parameters obtained.  Note that the through data S12 and S21 appears to be 
the sum of the two probe losses shown in figures 6 and 7, plus the additional loss of the CPW 
transmission line on the standard substrate. 
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                  Two-Port Measurement Through the Probes in Figures 6 and 7 
 
                                                              Figure 8 

 
 
Improvements 
 
The initial measurements were encouraging.   The bias T, which is a scaled version of the 
latest version used on Cascade’s WR05 probes, worked well, with no resonances up through 
at least 325 GHz.  It was clear that the waveguide should be as short as possible to minimize 
loss.  The back short was mechanically improved.  Several different tip configurations were 
tried, and the easily interchanged photolithographic membrane tip made it easy to modify 
contact pitch.  
 
Measurement of WR-03 Probes on WR-05 VNA System 
 
Cascade Microtech does not currently have a 325 GHz VNA system, but there is some 
overlap between the WR03 and WR05 bands, so the improved WR03 probes were measured 
on Cascade’s WR05 system after a WR05 waveguide cal.   This is very instructive, as the  
WR03 waveguide cutoff is easily observed in the reflection and transmission data, and the 
upper frequency limit of the WR05 system is also clear.  Figures 9 and 10 are two different 
WR03 probes with bias Ts measured in Cascade’s WR05 system, from 180 to 240 GHz.  As 
expected, the loss is high at the low end of the frequency range, and the VNA measurements 
become unreliable above the nominal band edge at 220 GHz. 
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                             WR-03 Wafer Probe S/N003 on WR-05 System 
 
                                                           Figure 9 

 

 
 
                            WR-03 Wafer Probe S/N004 on WR-05 System 
 
                                                          Figure 10 
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The system was then calibrated using WinCal with the reference plane at the WR03 probe 
tips using a calibration standard substrate, and figures 11 and 12 are measurements of a 9 
picosecond length of CPW transmission line after the WR03 probe tip cal.  Figures 11 and 12 
clearly show that the cal through the WR03 probe tips is unstable above 225 GHz on the 
WR05 system, but is clean and stable from 200 through 225 GHz. 
 
 

 
9 picosecond CPW Line Loss                             9 picosecond CWP Line Reflection 
 
                   Figure 11                                                              Figure 12 
 
Conclusions 
 
Photolithographic Membrane Tip Wafer Probes have been designed, built and measured for 
the 220 – 325 GHz WR-03 waveguide band.  Example probes have been demonstrated with 
and without an integrated bias T on both the JPL 325 GHz VNA system and in the upper 
frequency range  the Cascade Microtech 220 GHz VNA system.  A calibration with the 
reference plane at the probe tips has been achieved on both systems, and the probes will 
next be used to evaluate active circuits similar to those reported in references 5-7. 
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