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Abstract— In order to improve the crystalline quality of NbN 

ultra thin film for THz HEB applications, several buffer layers 
have been selected and investigated. The influence of the buffer 
layers on thermal boundary resistance of membrane-type Hot 
Electron Bolometer (HEB) devices and on their IF bandwidth is 
discussed. The influence of substrates and buffer layers on the 
quality of NbN ultra thin film has been studied by performing 
Atomic Force Microscopy (AFM) and low reflectometry 
measurements on NbN films on different substrates (3 µm SOI 
substrate and MgO buffered 3 µm SOI substrate). In particular, 
the physical properties (roughness and thickness) of NbN film 
layers have been carefully measured. 

I. INTRODUCTION 

NbN Hot Electron Bolometer (HEB) mixers are the 

device of choice for low noise heterodyne receivers for future 
astronomic and Earth’s science space missions for the 
frequency range above 1 THz. Currently, the mixer noise 
temperature is approximately 10 to 15 times higher than the 
quantum limit (hν/kB=48 K/THz, where hν is the photon 
energy, and kB is the Boltzmann constant) [1,2,3,4] and the IF 
gain bandwidth on bulk substrate is up to 4.5 GHz [1,5,6].  

 
The goal and motivations of this work is to fabricate a 

multipixel heterodyne receiver for 2.5 THz based on NbN 
superconducting hot-electron bolometer (HEB) mixers with 
quasi-optical design. The main membrane advantages are 
related to the RF and LO coupling efficiency. A 16 pixel 
heterodyne camera has already been built, which will be 
operated at 2.5 and 4.7 THz for deuterated hydrogen (HD) and 
neutral atomic oxygen (OI) lines observations, 
respectively [7].  
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The performances of NbN HEB mixer rely very much on 

the substrate the HEB is placed on (in contrast to SIS and 
Schottky mixers). As the result of the finite electron relaxation 
rate, the 3 dB HEB mixer gain bandwidth is limited by 
fIF=(2πτmix)-1 : G(f)=G(0)/(1+(f /fIF)2). 

 
The gain bandwidth of NbN mixers is related to the 

« intrinsic » properties of the NbN material (the temperature 
derivative of the resistance, the electron-phonon interaction 
time, the electron and phonon thermal capacitances and the 
speed of sound), to the substrate (the film/substrate phonon 
transmission) and to the measurements setup (bias current, IF 
load resistance, etc.) [8]. 

 
Since the electron-phonon interaction time in NbN films is 

very short (~12 ps [9]), the limiting parameter of the hot 
electrons relaxation rate τmix

-1 is the phonon escaping time 
(from the NbN film into the substrate). Figure 1 shows state of 
the art of the IF bandwidth using NbN mixers. Assuming that 
all these devices have the same thickness (expected thickness 
is 3.5 nm), the mixer gain bandwidth is related to the substrate 
or the buffer layer used. Most of the publications deal with 
HEB on bulk substrates but there are a few reports of how the 
HEB gain bandwidth is affected by replacing a bulk substrate 
by a thin membrane [7,10,11]. HEB devices (with 600 GHz 
design) have been fabricated on 1.4 µm thick Si3N4/SiO2 
stress-less membrane or Si3N4/SiO2/bulk-Si. The difference of 
gain bandwidth measured between these two types of devices 
was not significant and was in the 0.6-0.9 GHz range [7,12]. 
These values are narrower than for NbN on bulk-Si [13]. The 
reduction of the gain bandwidth compared to bulk Si substrate 
is probably due to the material on which NbN is grown 
(Si3N4/SiO2), and not to the membrane effect [12]. 
Nevertheless these values are sufficient for some 
radioastronomy applications. 

 
Since a membrane is needed to reduce losses but it may be 

detrimental for epitaxial growth of NbN, there are two ways to 
increase the IF bandwidth of HEB devices. The first method is 
to put the HEB outside the membrane and place it on a bulk 
silicon surface by etching the Si3N4/SiO2 buffer layer. 
Preliminary study has shown that a NbN film with a high Tc 
can be deposited on silicon surface after Si3N4/SiO2 etching. 
Moreover a careful study of the interconnexions between the 
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antenna on the membrane and the deported HEB mixer has to 
be done. The second way is to choose the “right material” for 
the membrane fabrication and NbN deposition. This technique 
is required in order to obtain epitaxial NbN thin films. 
Epitaxial thin films could exhibit similar properties as bulk 
material. So far it has not been thoroughly studied which 
buffer layers that are most suitable to get such films. The 
purpose of this work is to study the influence of various layers 
on NbN properties. 

 
This paper presents some results of this « buffer layer 

approach ». Five different structures have been studied: 
NbN/Si3N4/SiO2/Si, NbN/MgO/Si3N4/SiO2/Si, NbN/SOI, 
NbN/MgO/SOI and NbN/MgO/Si. The NbN films on these 
differents structures have been deposited by dc reactive 
magnetron sputtering at Moscow State Pedagogical 
University.  

II. STRUCTURAL CHARACTERIZATION OF NBN FILMS 
The choice of the most appropriate substrate for achieving 

the epitaxial growth of NbN is governed by several 
criteria [14]: (i) the lattice parameter mismatch between NbN 
and the substrate (or the buffer layer) has to be low 
(amorphous material is then prohibited); (ii) the NbN material 
and the substrate (or the buffer layer) have to be chemically 
inert; (iii) an ideal substrate would have a flat dense surface 
and be free of twins and other structural inhomegeneities; and 
(iv) the thermal expansion mismatch between NbN and the 
substrate (or the buffer layer) has to be low. Moreover the 
pressure and the substrate temperature during deposition have 
to be properly chosen in order to satisfy thermodynamical 
conditions during growth. 

 
According to Table I,  the most suitable material are 3C-

SiC, Al2O3 and MgO. Their lattice mismatch with NbN 
material is approximately zero. Si3N4/SiO2 buffer layer is not 
the most suitable substrate for achieving the epitaxial growth 
of NbN. The Si3N4 layer described here and used for the 
previous realisation of NbN HEB devices on membrane was 
amorphous. It is possible that the reduced IF bandwidth 

measured in NbN/Si3N4/SiO2 devices was related to reduced 
quality of the NbN films. 

 
Samples have been studied by x ray diffraction (XRD) in 

grazing 2θ configuration so that the signals from the substrate 
is minimized compare to those of the ultra thin film. Figure 2 
shows the results for NbN/SOI and NbN/MgO/SOI. In the 
latter case all possible MgO orientations are observed 
indicating a polycrystalline MgO buffer layer. This was 
expected since the MgO layer was deposited at room 
temperature. In both cases reflections from the ultra thin NbN 
films are weak and no preferential orientation could be 
established, thus revealing the polycrystalline structure of 
NbN. The peaks are also quite wide compared to reflections 
from epitaxial layers.  

Fig. 1.  State of the art of the IF bandwidth using NbN mixers (data taken 
from Refs. 5, 6, 7 and 12) 

TABLE I 
LATTICE MISMATCH  BETWEEN NBN MATERIAL AND DIFFERENT POSSIBLE 

SUBSTRATES OR BUFFER LAYERS 

Material Lattice parameter 
[Å] 

Lattice mismatch δ 
δ = (asubstrate - aNbN)/asubstrate 

NbN 4.39 – 4.42 n.a. 
Si3N4 7.59 + 0.52 

Si 5.43 + 0.19 
CeO2 5.41 + 0.18 
YSZ 5.14 + 0.14 
Al2O3 4.76 + 0.07 

3C-SiC 4.36 - 0.01 
MgO 4.20 - 0.05 

III. THICKNESS MEASUREMENTS  
The thicknesses have been investigated with a 

spectroscopical ellipsometer (from J.A. Woollam Co.), with x 
ray reflectometry, or with high-resolution transmission 
electron microscopy (HRTEM). The details of the modelling 
of the studied structures will be published seperately. The 
NbN exhibits a metallic behaviour in ellipsometry terms. The 
analysis also gives that the optical constants of the NbN are 
slightly different in the different samples, which may indicate 
that the stoichiometry of NbN could vary between the 
samples. 

Fig. 2.  XRD using grazing 2θ diffraction of 2 different samples: 
NbN/MgO/SOI and NbN/SOI. Peaks marked with * are parasitic signal from 
the instrument. 
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The SOI substrate exhibits a 3 mm silicon device layer 

(high resistivity), a buried oxide (BOX) 500 nm ± 5% thick 
and a 520 μm thick handle silicon wafer. Thin low stress 
Si3N4/SiO2 membranes could be obtained with  0.6 μm thick 
Si3N4 buffer layer and 0.8 μm thick SiO2 buffer layer. 

 
As shown in Table II, the thicknesses from ellipsometry 

measurements are quite consistent with the substrate 
specifications. An important fact is that the measured NbN 
thickness is larger than expected for all samples. This 
thickness is between 5 to 10 nm and seems to be substrate 
dependent. Electrical properties of the NbN films and 
therefore of the devices are related to the quality and the 
thickness of the NbN film. For example, it is known that for a 
given substrate the critical temperature decreases with the 
thickness of the NbN film (thinner film gives lower critical 
temperature) [5]. Therefore, thickness measurements have to 
be considered important for the further development on 
devices based on such ultra thin films. Previously Gao et al. 
using HRTEM found a thicker NbN film than expected from 
deposition on bulk Si and on 3C-SiC buffer layer [15]. 
Moreover, ellipsometry revealed the presence of native silicon 
dioxide. A quite thick oxide (6.7 nm) has been measured on 
top of the SOI structure. One reason why this layer is much 
thicker than expected (1 to 2 nm usually) could be linked to 

the NbN deposition process that oxidises the Si surface. The 
vacuum is never perfect (oxygen remains) and the sample 
surface heats up to 800 °C during the deposition process. 
HRTEM measurement has to be done to check the thickness 
of the native silicon dioxide. 

 
Fig. 3.  AFM image of NbN/SOI sample: the associated rms roughness is 3 Å 
(5×5 μm2 area).  

TABLE II 
EXPECTED STRUCTURES COMPARED TO THE MEASURED THICKNESSES FOUND 

ELLIPSOMETRY TECHNIQUE FOR 3 DIFFERENT SAMPLES  

Samples Expected structure      Measured structure 

NbN 3.5 nm ± 5% NbN 5.9 ± 0.4 nm 
  SiO2 6.7 ± 0.7 nm 
Si 3 μm Si 2960.0 ± 0.3 nm
SiO2  

(BOX) 500 nm± 5% SiO2 

(BOX) 489.9 ± 1.1 nm 
NbN/SOI 

Bulk-Si 520 μm Bulk-Si  
NbN 3.5 nm ± 5% NbN 7.8 ± 0.1 nm 
MgO 200 nm MgO 206.7 ± 0.5 nm NbN/MgO/Si 
Bulk-Si 520 μm Bulk-Si  
NbN 3.5 nm ± 5% NbN 10.1 ± 0.1 nm 
Si3N4 600 nm± 5% Si3N4 602 ± 1 nm 
SiO2 800 nm± 5% SiO2 784.9 ± 1.1 nm NbN/Si3N4/SiO2/Si 

Bulk-Si 520 μm Bulk-Si  

 
Fig. 4.  AFM image of NbN/MgO/SOI sample: the associated rms roughness 
is 5 Å (5×5 μm2 area).   

TABLE III 
PHYSICAL AND ELECTRICAL PROPERTIES OF DIFFERENT NBN SAMPLES 

NbN (3.5 nm expected) 

Samples Structural 
properties 

Thickness 
[nm] 

(methodb) 

Roughness 
[Å] 

(2×2 μm2) 

R300K 
[Ω�] 

Tc 
[K] 

NbN on 
Si3N4/SiO2/Si poly. a 

10.1± 0.1 
(ellips.) >9 660-

700 8.3 

NbN on 
MgO/Si3N4/SiO2/Si poly. a ~5-7 

(TEM) 
 470-

480 11.1 

NbN on 
SOI poly. a 

5.9± 0.4 
(ellips.) 3 to 9 450-

500 9.5 

NbN on 
MgO/SOI poly. a 

~7 
(X-ray) ~5 500 10.2 

NbN on 
MgO/Si poly. a 

7.8± 0.1 
(ellips.)  250-

255 13.0 

aAll the samples are polycrystalline. 
bMethod used: ellipsometry, HRTEM or x ray measurements 

IV. SURFACE MORPHOLOGY 
AFM measurements have been made on the films. The root 

mean square (rms) roughnesses are quite large compared to 
the NbN film thickness (Table III). The surface morphology is 
not homogeneous on a 5×5 μm2 scale, which could cause 
problem for the HEB fabrication (cf. figures 3 and 4). 

 
Table III gives the summary of the physical and electrical 

properties of the NbN films. The sheet resistance value at 
room temperature and the critical temperature for each sample 
are given. All the films are polycrystalline (from XRD and 
HRTEM analysis). Assuming that the NbN thickness is 
similar (around 6-7 nm), the MgO buffered bulk-Si seems to 
be the more promising: it gives a low sheet resistance and a 
high critical temperature. 
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V. CONCLUSION 
Physical and electrical properties of NbN ultra thin films 

with different buffer layers and different substrates have been 
measured and studied. We have demonstrated that several 
physical and electrical parameters of the NbN film depend 
strongly on the choice of buffer layers and substrates. 
Thickness and roughness seem to be the most sensitive 
parameters. Meanwhile, the thickness measurements on 
devices based on such ultra thin films have to be considered 
very carefully. There are still big technological challenges to 
achieve ultimate NbN ultra thin films and devices based on 
them. 
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