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Abstract—This article describes several aspects of ALMA 

band 9 cartridges: design, development and characterization. We 
give special attention to the characterization of the system. In this 
context, we present the noise measurements of the first eight 
cartridges with an emphasis on the extremely large IF bandwidth 
(4-12 GHz). The IF gain slope, receiver linearity and saturation, 
receiver beam pattern and cross polarization level measurements 
are also presented. 
 

Index Terms — Heterodyne detection, vector network 
analyzer, sub millimeter wavelengths, calibration, reflecometer, 
black body 
 

I. INTRODUCTION 
ECTOR network analyzers (VNA) are common tool in 
microwave and millimeter wave laboratories. The 

capability in measuring not only amplitude but phase response 
of the circuit under test is a valuable asset for investigating RF 
properties of various systems. Progress in electronically 
tunable submm solid state sources allows for using them to 
extend a frequency range of VNA into submm/THz 
frequencies [1], [2].  

In this report we present a construction and measurement of 
a single port quasi-optical VNA covering in the range of 600-
670 GHz. This VNA was then used for measurements of 
frequency and spatially resolved reflection response of a 
SiC/Stycast absorption coating which is used both in ALMA 
and HIFI. The ability of spatially resolving the reflected signal 
allows for discriminating against contributions of other 
components of a test set up, thus greatly improving the 
measurement accuracy. 

A Mihelson interferometer quasi-optical configuration was 
used to create a single port reflectometer. An ALMA band 9 
x6 warm multiplier assembly was used as a signal source and 
a subharmonicaly pumped superlattice device has been used 
as a detector. These components allow to achieve dynamic 
range of 60 dB without using cooled detector. A spatial 

resolution of about 3 mm has been demonstrated. 
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II. LAYOUT OF MEASUREMENT SYSTEM 

A. Quasi-optics layout 
The reflectometer is made by using the Mihelson 

interferometer scheme as shown in fig. 1, 2. Green dashed 
lines represents the main path of the signal and the red dashed 
line represent a parasitic channel which can be calibrated out 
using a standard calibration load (”matched load”, and 
“short”) techniques. A 40 micron thick Mylar foil beam 
splitter was used which corresponds to a 3 dB reflected -
transmitted signal ratio for the frequency of interest. Main 
polarization of set-up is vertical (perpendicular to optical table 
plane) and is set by a polarization of detector and transmitter 
diagonal horns. 

An ALMA x6 multiplier prototype made by NRAO and 
VDI has been used as a signal source [alma]. It has 610-
712 GHz frequency coverage and 40 microwatt of peak output 
power. Its beam has been formed by a diagonal horn and an 
HDP lens. The source has an additional WR-8 coupling 
waveguide port which allows to pick part of the signal before 
x6 multiplier to create a reference for phase/amplitude 
detection circuit. 

A subharmonically pumped (n=30..35) superlattice 
electronic device (SLED) was used as detector. It is mounted 
in to detector block with integrated diagonal horn. Its SMA 
connector DC/IF input was also used to provide a sub 
harmonic LO signal at 16…20 GHz. The same type of 

V 

Fig. 1. Layout of single port quasi-optical VNA 
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detector was used in room temperature beam pattern 
measurements of ALMA band 9 optics [3]. 

The parasitic channel path of the interferometer shown in 
yellow line in fig. 1 has been terminated by a beam dump. The 
absorption coating has been made out of carbon loaded 
Stycast epoxy with SiC grains as the top layer [4]. Coating 
was deposited on the aluminum cone shape substrate (see fig. 
2).  

Fig. 2. Layout of the experiment in 3D. 

B. Phase and amplitude detection circuit 
The homodyne scheme similar to one used for ALMA [5] 

and HIFI [6] beam pattern measurements was used. A 
simplified signal diagram is presented in fig. 3. The source 
was driven by a frequency synthesizer S1. Another frequency 
synthesizer S2 was used both for pumping a detector SLED as 
well as Schottky mixer for creating reference system. Both S1 
and S2 are Rohde & Schwartz SMP-20 type. The primary IF 
was 1 GHz. The IF signal of mixer M1 is amplified and 
multiplied by 6 to create a primary reference signal.  

An additional mixer pair M3, M4 was used to take out 
coherent phase noise introduced by synthesizers S1 and S2 
and allow for using extremely narrow detection bandwidth of 
100 Hz. A Rohde & Schwartz microwave VNA in time sweep 
mode has been used as signal detection unit. Its internal 
reference oscillator was used as S3. All S1, S2 and S3 have 

been phase locked to each other. 
During measurements, for each point of signal frequency a 

oscillators S1 and S2 have been tuned such as the primary IF 
stays 1 GHz; output power of S2 is adjusted to maximize S/N 
at SLED detector and time sweep of VNA is taken. This 
procedure is repeated for each frequency following a table 
lookup procedure in control computer. It was found that 
frequency and output power setting repeatability is sufficient 
for doing frequency sweeps. 

Fig. 3. Signal detection scheme 

C. Calibration procedure 
A quasi-optical VNA calibration has been achieved by 

measuring amplitude and phase response of the system while 
two calibration loads were presented to its input beam. A flat 
mirror was mounted and presented a “short” calibration load. 
An absorber material sheet mounted at large distance in the 
input beam served as a “matched load” equivalent. Any 
consequent measured traces ( )A f  were corrected by the 
calibration information as follows: 

( ) ( )( )
( ) ( )

load
c

short load

A f A fA f
A f A f

−
=

−
, 

where   is the complex measured response,  

is matched load response, and  is a “short” 
response.  

( )A f ( )loadA f
( )shortA f

This calibration procedure is used for all the data presented 
in this paper. For creating a spatial response of test objects a 
Fourier transform of complex amplitude  is used to 

create complex spatial response . 

( )cA f
( )cA x

Fig. 4. ALMA test load. 

D. ALMA 100 C test load 
ALMA 100 C test load is shown in fig. 4. It is made of a 

copper disk suspended in an aluminum case and provided with 
temperature sensor and resistive heater network for 
temperature control. Its surface is coated by a carbon loaded 
Stycast epoxy with SiC grains to provide an optimum 
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absorption at submm frequencies. The same type of load was 
used in HIFI and ALMA band 9 receiver absorbers [4]. The 
goal of these measurements was to characterize the reflection 
coefficient of this type of absorber.  

III. MEASUREMENTS AND DISCUSSION 

A. Frequency response 
Fig. 4 shows measured amplitude frequency response of 

ALMA band 9 calibration load compared with the response of 
a flat mirror mounted at the load position. In order to 
investigate the specular/diffuse reflection, the load has been 
tilted by a 15 degree angle and measured again. The S/N leval 
of 50 dB has been achieved and load reflection of -33 dB 
across the frequency band has been demonstrated for specular 
reflection. If the load is tilted its reflection coefficient 
improves by 3-5 dB.   

B. Spatial response  
A spatial response of ALMA calibration load is presented 

in fig. 5. It was obtained from the same measurement as in 
fig. 4 with an addition of a strait load which was shifted 
towards the VNA by 10 mm. As it is clearly seen from the 
fig. 5, reflection from the load can be resolved spatially with 
the accuracy of about 3 mm. The amplitude of the response 
corresponds to an average value in fig. 4.  

Data shown in fig. 6, which corresponds to fig. 5 in the 
linear scale, demonstrates the ability of this method to 

spatially resolve the reflection even for relatively low level 
signal. It can also be seen in fig. 5 that response from tilted 
load is wider in distance space than response of the strait load 
as it is expected. 
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Fig. 4. Measured amplitude frequency response of strait load “Load (90 deg)”, 
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IV. CONCLUSION 
We have demonstrated a quasi-optical single port vector 

network analyzer configuration over frequency range of 600-
670 GHz with signal to noise ratio of about 60 dB.  A spatial 
resolution of about 3 mm can be reached in this configuration 
allowing to analyze the reflection response of the device under 
test in greater detail.  

Performance of ALMA test load was measured to be of -32 
dB reflection level over 600-670 GHz which is localized at the 
surface of the load. The tilted load shows wider spatial 
response and approx 5 dB lower reflection signal amplitude. 
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