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Abstract—In this article we answer experimentally the 

question of how much spurious signal power level (relative to LO 
power) can be tolerated by an SIS mixer. Spurious signals that 
are inside and outside of the signal sideband have been 
considered. It is demonstrated that about −20 dBc of in-RF-band 
spurious level can be tolerated. For out-of-RF-band spurious, on 
the other hand, a level of about −15 to −10 dBc can be tolerated 
depending on the frequency separation between the LO and the 
spurious signal. 
 

Index Terms — Heterodyne detection, saturation, spurious 
signals, SIS mixer, Local Oscillator, sub millimeter wavelengths 
 

I. INTRODUCTION 
HE instantaneous RF bandwidth of SIS-based mixers is 
limited by the relatively high capacitance of SIS 

junctions. Recently, significant progress has been achieved in 
extending the RF bandwidth of SIS mixers either using 
multiple junctions designs [1] or making use of high current 
density AlN barrier junctions [2], [3]. At the same time 
progress has been achieved in generating tuner-less LO power 
by all solid state sources [4]-[7]. These sources typically 
consist of microwave multipliers and amplifiers 
(F < 120 GHz) followed by a set of Schottky multipliers. 
Although providing enough power these sources often emit an 
unwanted combination of harmonic signals which can fall into 
the large RF band of state of the art SIS mixers and potentially 
disturb their nominal operation. 

This article answers experimentally the question of how 
much spurious signal power (relative to LO power level) can 
be tolerated by an SIS mixer in two cases: 

1) The spurious signal frequency falls in the input RF band 
of the mixer and it appears at the IF output, i.e. classical 
saturation by a narrow band signal. This case was previously 
discussed in [8], [9]. 

2) The spurious signal frequency falls in the instantaneous 

RF bandwidth of mixer but outside the input RF band and it 
does not appear at the IF output. This was discussed for lower 
frequency in [10]. 
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In order to measure the tolerable spurious signal power 
level an experimental set-up has been created which allows to 
apply simultaneously two narrow band signals as well as a 
calibrated 300K/80K calibrator to an input of ALMA band 9 
SIS mixer. Additionally, the output power of one of the 
narrow band sources can be varied by a rotating grid. The 
output power of the sources is strong enough that both can 
pump the SIS mixer and, thus, both can be calibrated with 
respect to each other.  

We have performed standard hot/cold measurements while 
varying the power of one of the sources and using the other as 
LO. The frequency plan was such that a variable “spurious” 
signal source  was kept fixed 642 GHz and several sets 
measurements were performed at different LO frequencies. It 
is demonstrated that about −20 dBc in-RF band spurious level 
can be tolerated. On the other hand, when out-of-RF-band is 
considered, about −15 to −10dBc can be tolerated depending 
on the frequency separation between the LO and the spurious 
signal. 

II. MEASUREMENT SET-UP AND METHODS 

A. SIS mixer 
An ALMA band 9 SIS mixer has been used in this work 

[11]. It uses a waveguide coupling scheme. An input F/2.5 
signal beam is coupled to the main waveguide mode by means 
of a corrugated horn. A reduced size waveguide couples the 
RF signal to a single SIS junction fabricated on quartz 
substrate. An Nb-SiO2-Nb integrated tuning structure together 
with a fixed back short cavity tunes out the SIS junction’s 
parasitic capacitance and provides an optimum input match.  

The SIS junction is of the Nb-AlOx-Nb type with an area of 
approx 1 µm2, an RnA value of 30 Ωµm2, a quality factor of 
20 and a gap voltage of 2.8 mV at the physical temperature of 
4.2 K. It was manufactured at TuDelft facilities following a 
standard SIS process [12]. The junction and integrated tuning 
circuit dimensions have been defined using e-beam 
lithography process. The Josephson effect noise has been 
suppressed during operation by means of a magnetic coil 
integrated into the mixer block. 

B. Receiver layout 
The optics layout of the main experiment is shown in 

T 
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Fig. 1. A Gunn diode oscillator (100-120 GHz) followed by a 
Schottky diode doubler and tripler has been used to simulate a 
spurious signal. It has been coupled to the input beam by 
means of a 12 micron thick Mylar beam splitter (BS1) and a 
HDP lens (L1). The output frequency of the RF source has 
been fixed throughout whole experiment at 642 GHz and its 
output power adjusted regulated by means of a polarizing grid 
mounted in a computer controlled rotating fixture. The peak 
output power of several tens of microwatts can be regulated to 
approximately -40 dB relative power level referred to the 
input of the mixer. 

An ALMA band 9 prototype has been used as a tunable 
frequency LO source. This LO is a combination of power 
amplifiers and frequency multipliers with a final stage of ×6 
(integrated 2×3) multiplier with output frequency range of 
600-712 GHz. This source has been made at NRAO in 
Charlottesville. The output power of the LO has been adjusted 
by a grid polarizer (G2) and coupled to a receiver beam by 
means of a 12 micron Mylar beam splitter (BS2) and a HDP 
lens (L2). It was possible to achieve an optimum pumping 
level of the SIS mixer throughout whole ALMA band.  

RF and LO signals that pass through beam splitters or 
reflect from grids (G1, G2) were terminated in signal 
absorbers (not shown in the figure). 

A switchable hot/cold load with temperature levels of 80 K 
(liquid nitrogen) and 300 K (room temperature) has been used 
to measure receiver noise temperature and gain under different 
conditions.  

The SIS mixer, its associated cold optics (M1, M2) and cold 
IF components have been mounted in a vacuum space of a 
Infrared Labs HDL-8 liquid helium cryostat at 4.2 K. Two 
GoreTex® sheets of 1 mm thickness were used as 4 K and 

80 K infrared filters and high performance anti-reflection 
coated quartz plate was used as vacuum window of the 
cryostat. 

The cold IF coupling scheme uses a 4-12 GHz cryogenic 
isolator [13], and an InP type 4-12 GHz IF amplifier [14] of 
30 dB gain and 4.6 K noise temperature. The warm IF chain 
consisted of two MITEQ IF amplifiers, a set of attenuators, a 
computer controlled tuneable YIG filter (with a bandwidth of 
40 MHz) and an Agilent power meter. Particular care was 
taken to avoid saturation of the IF amplifier chain at all input 
conditions by choosing an appropriate attenuation level. This 
set-up allowed us to measure gain and noise temperature of 
the mixer versus IF frequency. 
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Fig. 1.  Layout of the saturation experiment. 
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Fig. 2. Measured Fourier Transform Spectrometer response of SIS mixer 
showing an instantaneous bandwidth. 
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Fig. 3. Measured receiver noise temperature of SIS mixer. Measurements were 
done while RF source (see Fig. 1) was switched off. 

C. Experimental method and signal source power 
calibration  
During the experiment, the receiver was tuned first to a 

given LO frequency and an optimum pumping level was 
chosen. Then, for each RF spurious source power the receiver 
output power has been recorded as a function of IF frequency 
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both for 80 K and 300 K black body loads at the input. This 
information permitted to calculate the receiver Y-factor, noise 
temperature and gain, which is then compared to an RF power 
off situation. The LO frequencies were chosen such that the 
spurious frequency fell in and out of the receiving sideband of 
the SIS mixer. 

The RF source power referred to the SIS junction was 
calibrated by measuring the height of a 1st photon assisted 
tunneling step as function of the grid G1 rotation angle when 
LO source was off. The detected power has been calculated 
based on Tucker’s theory and was in a good agreement with a 
cosine to the power fourth law, since both mixer and RF 
source are highly polarized. The maximum RF power was 
enough to pump the SIS mixer. The same method was used to 
measure the available LO power at the SIS junction at a given 
LO frequency. Using this method we can express the RF 
signal power in dBc relative to the LO power at the SIS 
junction at a given LO frequency. This allows us to exclude 
the influence of the frequency dependence of the input 
matching network throughput from consideration. 
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Fig. 4. Measured receiver noise temperature of SIS mixer vs. RF source power 
for several LO frequencies. Signal frequency was kept at 642 GHz. 
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Fig. 5. Measured receiver gain of SIS mixer vs. RF source power for several 
LO frequencies. Signal frequency was kept at 642 GHz. 
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Fig. 6. Receiver noise temperature with receiver noise at zero RF power 
subtracted. Data are taken from fig. 4 

III. MEASUREMENT RESULTS AND DICUSSION 

A. Standard FTS and heterodyne characterization 
A standard direct response of the mixer, as measured with a 

Fourier transform spectrometer, is presented in Fig. 2. It 
demonstrates good coverage of ALMA band 9 and an 
instantaneous RF coverage from 620 to 720 GHz. This 
response is typical for ALMA band 9 mixers of preproduction 
series design. The measured receiver noise temperature as 
function of the LO frequency with the RF source power set to 
zero is presented in Fig. 3. When compared with 
measurements performed within an ALMA band 9 cartridge, 
the noise temperature performance is worser as in the 
cartridge the LO source is at 80K. Nevertheless, these results 
demonstrate the adequate noise band coverage, and that this 
SIS mixers is good choice for further saturation level 
measurements. 

B. Saturation measurement results and discussion 
Receiver noise temperature and gain as function of the RF 

signal power for different LO frequencies are shown in 
Figures 4 and 5 respectively. The respective LO frequencies 
are indicated on the inset. When fLO = 650 GHz,  the response 
from the 642 GHz RF signal is present at an IF of 8 GHz. This 
IF frequency was excluded from the noise temperature and 
gain calculations. For other LO frequencies the RF frequency 
lies outside the nominal detection bandwidth. As it is 
demonstrated in Figs. 4-6 the receiver gain is the quantity 
which is the most sensitive to the presence of an RF signal. It 
becomes saturated for lower RF source powers than the 
receiver noise temperature and thus will be used as criteria for 
evaluation of allowable spurious signal power. The in-RF 
band spurious signal also has more effect (as can be intuitively 
expected) than the out-of RF band spurious signal. The −20 
dBc in-RF band and −15 to −10dBc of out of RF band 
spurious signal relative power level can be tolerated in this 
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particular receiver, based on these experimental results. 
One should note that noise temperature and gain 

calculations were done under the assumption that the mixer is 
pumped by a single LO source and signal from hot/cold is 
only converted to IF from the fLO ± fIF frequency range. 
However, as it can be seen from the power range (x-axis) of 
Figs. 4-6, the RF signal power can also be sufficient to pump 
the SIS mixer and, at these conditions, the RF signal is not a 
weak anymore and the SIS mixer operates under two LO 
signals simultaneously. This situation may give rise to a 
parasitic down conversion of frequencies around fRF: fRF ± fIF 
which would modify our gain and noise temperature estimate. 
We believe, however, that this effect does not affect our 
conclusions as saturation effects begin to show already at 
relatively low RF power levels, where this parasitic down 
conversion is expected to be small. An additional narrow band 
low power signal source at frequency fLO ± fIF can be used to 
calibrate the strength of parasitic down conversion. We plan 
to carry out this experiment in the near future. 

IV. CONCLUSION 
In conclusion, we have directly measured the power level of 

in-RF band and out-RF band spurious signals that can be 
tolerated by a single junction SIS mixer operating in the 600-
720 GHz frequency range. An strong test signal was presented 
at the receiver input to simulate the presence of a spurious 
signal. Based on these experimental results, a −20 dBc of in-
RF band and a −15 to −10dBc of out-of-RF band spurious 
signal relative power level can be tolerated in this particular 
receiver. 
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