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Abstract—This article describes several aspects of ALMA 

band 9 cartridges: design, development and characterization. We 
give special attention to the characterization of the system. In this 
context, we present the noise measurements of the first eight 
cartridges with an emphasis on the extremely large IF bandwidth 
(4-12 GHz). The IF gain slope, receiver linearity and saturation, 
receiver beam pattern and cross polarization level measurements 
are also presented. 
 

Index Terms — Heterodyne detection, saturation, spurious 
signals, SIS mixer, Local Oscillator, sub millimeter wavelengths 
 

I. INTRODUCTION 
HE Atacama Large Millimiter Array (ALMA) project is a 
collaboration between Europe, North America, and Japan 

to build an aperture synthesis telescope consisting of at least 
64 12-m antennas located at 5000 m altitude in Chile in its full 
configuration, ALMA will observe in 10 frequency bands 
between 30 and 950 GHz, and will provide astronomers with 
unprecedented sensitivity and spatial resolution at millimeter 
and submillimeter wavelengths. Band 9, covering 600-720 
GHz, is the highest frequency band in the baseline ALMA 
project, and will thus offer the telescope’s highest spatial 
resolution. 

The ALMA Band 9 cartridge is a compact unit containing 
the core of a 600-720 GHz heterodyne receiver front-end that 
can be easily inserted into and removed from the ALMA 
cryostat present in every antenna. The core technologies of 
every cartridge include low-noise, broadband SIS mixers; an 
electronically tunable solid-state local oscillator; and low-
noise cryogenic IF amplifiers. These components are built into 
a rigid opto-mechanical structure that includes a compact 
optical assembly mounted on the cartridge’s 4K stage that 

combines the astronomical and local oscillator signals and 
focuses them into two SIS mixers as shown in Fig. 1. 
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Fig. 1. Layout of the ALMA band 9 receiver.. 
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In this article we present the noise measurements of the first 
eight receiver units with an emphasis on the extremely large 
IF bandwidth (4-12 GHz). The IF gain slope, receiver linearity 
and saturation, receiver beam pattern and cross polarization 
level measurements are also presented. 

II. RECEIVER LAYOUT 

A. Overall layout 
The ALMA band 9 receiver layout [1] is shown in Fig. 1. 

The receiver elements occupy four temperature levels. The 
temperature levels (4, 12, 90, and 300 K) are provided to the 
cartridge body from the main ALMA cooler and the cryostat 
cooling distribution system. The receiver insert (cartridge) can 
be placed into the main ALMA cryostat without 
disassembling the cartridge or the cryostat. The heat contact is 
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provided by flexible heat links that only make contact when 
cryostat is cold and the mechanical support is made at the 
bottom of the cartridge assembly. The cartridge walls (not 
shown in figure) are made of fiber glass reinforced epoxy and 
the construction is rigid enough to maintain the beam 
orientation within required tolerances for all orientations of 
the ALMA antenna. 

B. Signal optics 
The optics forming the main beam is all contained at the 

4 K level. The SIS mixer beam is formed by a corrugated horn 
which is followed by two elliptical mirrors providing a 
frequency independent coupling between telescope and mixer. 
A linear wire grid is inserted between the mirrors to split the 
input beam in to two orthogonal linear polarizations. An 
additional elliptical focusing mirror and SIS mixer are used to 
receive the orthogonal polarization. The details and analysis 
of ALMA band 9 optics has been presented in detail 
previously [2]. The entire 4 K optics is arranged in a single 
CNC machined block that also contains part of the LO 
coupling optics. The relative position of mirrors is ensured by 
proper manufacturing tolerances of the mirrors themselves and 
mechanical fastening interfaces.  

C. Local oscillator arrangement 
A quasi-optical LO insertion scheme was chosen for 

ALMA band 9 receiver. For each polarization channel an 
integrated ×3×3 Schottky diode multiplier (made by Virginia 
Diodes) is mounted on the 90 K stage. Its output beam is 
formed by a diagonal horn and is coupled by means of two 
elliptical mirrors: one is mounted on 90 K stage and another is 
mounted on 4 K stage. The LO beam is inserted into a signal 
beam just in front of a SIS mixer horn by means of a 6 
micrometer thick Mylar® beam splitter (∼4% coupling). Most 
of the LO output power is terminated into the black body 
absorbers mounted at 4 K level behind the beam splitters.  

 The ×3×3 multiplier is pumped by a microwave signal in 
the range of 67.7 to 79.1 GHz which corresponds to an output 
frequency range of 610 to 712 GHz. This signal is carried 
from a vacuum WR-12 waveguide flange at the 300 K base 

plate to a multiplier at the 90 K level by means of a gold 
plated stainless steel WR-12 waveguide. The pumping level of 
LO multipliers can be adjusted independently by a room 
temperature electronics providing optimal pumping level for 
each SIS mixers. The efficiency of this multiplier improves 
when it is cooled to 90 K compared to a room temperature and 
it provides 40 to 100 microwatts of output power across the 
band. 

The room temperature driver for the LO system is made at 
National Radio Astronomical Observatory (NRAO) in 
Charlottesville. It is based on a YIG oscillator, its signal is 
multiplied ×3 and amplified by a power amplifier. Then it is 
split between two power amplifiers with electronically 
adjustable gain. These power amplifiers consist of several 
MMIC chips and use waveguide power combining 
technology.  As a result, the output of these amplifiers is 
matched to WR-12 waveguide avoiding standing waves in the 
system. The output power level of this amplifier can be 
regulated anywhere in the range of 10 to 100 milliwats. 
Details of similar system can be found in [3]. 

Fig. 2. Photograph of receiver cartridges #2-#5 

D. IF system 
The band 9 cartridge IF system covers the frequency range 

from 4 to 12 GHz. The output of every SIS mixer is connected 
to a three stage InP IF amplifier made by YEBES via a 
cryogenic 4-12 GHz isolator made by Pamtec. The amplifier 
noise temperature is in the range of 4 to 6 K, the gain is 
around 30 dB and the power dissipation at 4 K is about 7 mW.   
The amplifier output is connected to a vacuum feedthrough 
interface (situated at the base plate) by a stainless steel cable 
which is anchored at the 4, 12 and 90 K levels. Finally, at 
room temperature, a gain-slope-corrected amplifier of 30 dB 
average gain is used to further boost IF output signal. A 3 dB 
gain slope across 4-12 GHz band is used to compensate for 
frequency dependent cable losses and mixer gain variation.   

E. SIS mixers 
Two identical mixers blocks are used in the receiver 

system. They contain a corrugated horn, an all Nb SIS mixer 
with single Nb-AlOx-Nb SIS junction. The mixers are of the 
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Fig. 4. Measured receiver noise temperature of SIS mixer vs. RF source power 
for several LO frequencies. Signal frequency was kept at 642 GHz. 
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waveguide type and are described in detail in [4]. A 
superconducting coil is also mounted in the mixer holder to 
provide suppression of the Josephson effect. A typical 
operation current of 9 mA is required. A 500 Ohm resistor is 
built-in close to a SIS junction to be used to heat it up above 
the critical temperature and so remove any trapped magnetic 
field flux without dissipating much power. The system can 
return to operating conditions within 5 seconds. 
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Fig. 5. Measured receiver noise temperature as a function of IF for four 
cartridges (#1..#4), for two polarization channels each, at 654 GHz LO 
frequency. 

F. Construction status 
A total of eight receiver units have been built and fully 

characterized to date. Two of them have been delivered to the 
ALMA integration center for further system test. Fig. 2 shows 
the photograph of four of the constructed units. A summary of 
the receiver performance will be presented in the following 

section. 

Fig. 6. Receiver beam in far field zone. Dashed line is the edge of the ALMA 
telescope secondary mirror. 

III. DEMONSTRATED RECEIVER PERFOMANCE AND DISCUSSION 
In this section a summary of the receiver performance is 

presented: noise temperatures, IF gain variations, beam 
pattern, and saturation results. Measurement methods are also 
outlined. 

A. Receiver Noise performance 
Noise performance of band 9 cartridge system has been 

evaluated using a dedicated measurement set-up which 
includes: a switchable hot/cold load with temperature levels of 
80 K (liquid nitrogen) and 300 K (room temperature); a two 
channel IF system with YIG filters to analyze an IF response; 
a noise source to calibrate the IF system gain and a control 
computer with a control software. Most of the measurements 
can be done in batch mode without any operator’s 
intervention.  

During all performance measurements, the receiver was 
mounted in an ALMA test cryostat which provides the 
necessary temperature levels. The 4 K stage temperature was 
maintained by a software PID feed back loop at 4 K during all 
measurements. 

A summary of the measured noise temperature as a function 
of IF is presented in Fig. 3. The data correspond to the eight 
built cartridges. The noise temperature is averaged across the 
IF band and is not corrected for receiver optics. Good 
repeatability between units has been achieved mainly due to 
an improved junction production (e-beam lithography) and 
junction mounting control. A major improvement in 
sensitivity has been achieved because by mounting the LO 
source at the 90 K temperature level, thus LO noise 
contribution is minimal. 

Typical noise temperature dependences on IF are shown in 
Fig. 5 for four cartridges. Degradation of performance at 
around 12 GHz is due to a combination of several factors: SIS Fig. 7. Experimental layout for measurement of receiver saturation. 
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mixer parasitic capacitance, degradation of 4-12 GHz isolator 
parameters and increase of noise temperature of cold IF 
amplifier. Nevertheless, an adequate 4-12 GHz IF band 
coverage has been achieved. 

B. Receiver beam 
A typical receiver 2-D beam pattern is shown in Fig. 6. The 

far field plot has been obtained by a Fourier transform of near 
field data, which contains both phase and amplitude 
information. The near field measurement system was based on 
a method developed earlier [2]. The signal to noise ratio was 
about 70 dB which is adequate for determining reliably all 
beam parameters. 

The secondary mirror edge illumination taper is found to be 
in the range of 12 to 14 dB compared to a design value of 
12 dB and the beam direction is very close to a nominal 0.94° 
offset from vertical direction. 

The total power of cross polarization signal was found to be 
about −17 dB relative to a power in the co-polar beam. This is 
above ALMA specifications but in agreement with physical 
optics calculations done in GRASP [2]. 

C. Receiver saturation by a 100° C black body radiation 
Special attention was given to measurements of receiver 

saturation/linearity. Calibration scheme of ALMA assumes 
that a 100° C black body will be used as one of the calibrators 
form band 9. It is important to be able to measure accurately a 
small signal receiver gain as a function of the input signal 
power. 

The measurement layout is shown in Fig. 7. A small signal 
has been created by using a chopper wheel, covered by 300 K 
absorber, with an 80 K background liquid nitrogen load. This 
variable signal was inserted into receiver beam by means of a 
14 micrometer thick Mylar beam splitter that has 
approximately 7 % coupling. A variable temperature load has 
been made of an additional 80 K liquid nitrogen absorber 
which is put into transmission arm behind a rotating linear 
polarizing grid. Signal reflected from the grid was terminated 
on the hot plate absorber which was kept at 100° C. By 
changing the angle of the grid one can present an input signal 

varying from 80 K to 373 K.  
Receiver gain has been measured by using a fast Shottky 

diode power meter which was connected to a lock-in 
amplifier. The detection IF band of 4-12 GHz was determined 
by a band pass filter. Using large path length distances (0.8 m) 
and large IF detection bandwidth allowed us to average out 
standing waves that always exist in the experimental set-up, 
thus greatly improving the measurement accuracy compared 
to a single tone technique [5]. 

Signal from a lock-in amplifier was measured as a function 
of grid rotation angle for the range from 0° to 360° which 
resulted in passing through the same range of input 
temperatures four times. Input signal strength can be 
calculated from the grid angle using a Cos2 law. A typical 
measurement results are shown in Fig. 8. Receiver 
compression of less than 2 % has been observed for a 100° C 
load. Measured gain repeats well when passing the input 
power range several times which confirms that measurement 
accuracy is adequate. The measured value of gain does not 
depend on the level of liquid nitrogen in the load which 
confirms that this set-up is immune to the presence of 
moderate standing wave in the system.  

Fig. 8. Receiver small signal gain measured as a function of receiver input 
signal at 670 GHz LO frequency for two polarization channels. 

IV. CONCLUSION 
In conclusion, we have manufactured and fully 

characterized eight units of ALMA band 9 receiver covering a 
602 to 720 GHz input frequency range. All units demonstrated 
consistent receiver characteristics with the best measured 
noise temperature of all being 60 K. An improved 
measurement set-up has been created for measurements of 
gain saturation which has low measurement uncertainty due to 
averaging of receiver standing waves. Receiver gain 
compression below 2% has been demonstrated for 100° C 
load. 
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