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The quasiparticle lifetime is a crucial parameter in achieving a background limited noise 
equivalent power for kinetic inductance detectors. We present measurements of the quasiparticle 
lifetime of 150 nm thick sputtered tantalum on silicon kinetic inductance detectors using optical 
pulses. We find that the quasiparticle lifetime saturates at low temperatures, increases to a 
maximum of up to 45 μs and subsequently drops with increasing temperature. We attribute this 
behavior to non-uniformity in the superconductor. 
 
Introduction 
 
One of the greatest challenges for far 
infrared astronomy is the development of 
sensitive large cameras (>104 pixels), having 
a background limited sensitivity. To date no 
such detector exists. Recently kinetic 
inductance detectors (KIDs) have been 
proposed [1].  
 A KID consists of a 
superconducting microwave resonator and is 
a pair breaking detector; incident radiation 
breaks Cooper pairs into quasiparticles, 
changing the kinetic inductance of the 
superconductor, and thus the resonance 
frequency [2,3] and phase of the forward 
transmission. 

This non-equilibrium process leads 
to an excess amount of quasiparticles above 
the superconducting gap depending on the 
rate of photon absorption and quasiparticle 
loss. The interplay between photon 
absorption, quasiparticle recombination, 
phonon trapping and local superconducting 
properties leads to an effective ‘lifetime’ of 
the quasiparticles [4,5]. The detectivity of 
KIDs and other pair breaking detectors such 
as superconducting tunnel junctions (STJs) 
depends crucially on this quasiparticle 
lifetime. 
 
Experiment 
 
The measured phase response to an optical 
pulse can be seen in Fig. 1. The rise stems 

from the response time of the microwave 
resonator, which is a function of the loaded 
quality factor and resonance frequency. The 
exponential decay can be clearly 
characterized with a single decay time. Both 
the intensity and the pulse length are chosen 
to create a clearly observable response while 
staying in the linear regime. 

The quasiparticle lifetime is known 
to depend on the choice of material [4]. We 
have opted for tantalum, because of its 
demonstrated lifetime and high critical 
temperature. A 150 nm tantalum layer is 
sputter deposited onto a HF-cleaned [100] Si 
wafer. Prior to tantalum deposition a 5 nm 
niobium seed layer is sputtered to promote 
growth of the tantalum alpha phase [6].  
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Fig. 1. The phase response to an optical pulse of 
0.5 μs, the resonator response time is 3.7 μs. 
Both timescales are an order of magnitude 
smaller than the quasiparticle lifetime. The inset 
shows the response in the IQ plane, the resonator 
dip is slightly asymmetric. 

18th International Symposium on Space Terahertz Technology 

180



350 550 750 950
0

10

20

30

40

50

 

 

 C58 K9
 C58 K12
 C58 K13
 C60 K39
 C60 K36 (SiOx)
 C60 K43 (SiOx)

τ qp
 (μ

s)

T (mK)

 fit to Kaplan
 fit to T3

 
Fig. 2. The temperature dependence of the 
quasiparticle lifetime for different resonators in 
the frequency range of 4-6 GHz. With growing 
temperature, all show an increase in the lifetime 
until a maximum is reached after which an 
exponential decay takes over. The error bars are 
the standard deviation of multiple pulse 
responses. The lifetime of device K9 is fitted to a 
cubed temperature dependence and to a 
theoretical prediction of the recombination time 
using a gap of 0.27 meV [4]. 
 
Patterning is done using optical lithography 
and CF4/O2 reactive ion etching. The critical 
temperature is 4.4 K, its residual resistivity 
ratio is 3. The chip is partly covered with a 
10 nm sputtered SiOx layer. 

The devices are quarter wavelength 
CPW resonators and manifest as a circle in 
the polar plane of the forward transmission 
S21. This resonance circle is normalized: it is 
shifted to the origin and given unity radius, 
in such a way that at resonance the 
imaginary part is zero and the real part is 
minus unity. This scaling allows the 
response of different KIDs to be compared. 
Using a signal generator, IQ mixer and 2-
channel fast acquisition card the response 
can be monitored in time, see Fig. 1. 

The chip is mounted in a sample 
box on a He-3 sorption cooler. A GaAsP 
LED having a rated response time of 10 ns 
acts as photon source for the optical pulse. 
The LED is placed at the 4K plate and is 
optically coupled to the sample box via a 
plexiglass fiber and illuminates the whole 
chip.  
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Fig. 3. The quasiparticle lifetime for different 

ue to the broad illumination and small 

asiparticle lifetime is plotted 
versus 

pulse lenghts. The excess quasiparticle number at 
the end of the pulse is related to the pulse length, 
being around an order smaller or larger than the 
lifetime. The inset shows the response for a pulse 
length equal to the lifetime. 
 
D
resonator size the resonator and nearby 
ground plane is rather uniformly 
illuminated, leading to a homogeneous 
excitation of Cooper pairs and 
quasiparticles. This technique allows us to 
measure the quasiparticle lifetime without 
being limited by the outdiffusion of 
quasiparticles. 

The qu
temperature in Fig. 2 for several 

devices. When cooling down the 
quasiparticle lifetime increases until it 
reaches a maximum value at a temperature 
of 650 mK. Upon further cooling the 
lifetime starts to drop and seems to reach a 
saturation value around 350 mK. This 
feature is followed qualitatively by all 
devices. Quantitavely the lifetime at high 
temperatures and the saturation value of 
different devices lie closely together, 
however the maximum of the lifetime differs 
between 27 to 45 μs. Within this spread 
there is no significant difference in lifetime 
between resonators covered with a 10 nm 
SiOx layer, its presence does not 
significantly affect the lifetime. The SiOx 
layer leads to nearly a doubling of noise in 
covered resonators. The subject of noise will 
not be discussed in this article. 
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been ob

dent of pulse duration, see Fig. 3. 
The lifetime does not change when the 
sample is shortly heated above the critical 
temperature. We have not observed a power 
dependence of the quasiparticle lifetime 
below the resonator saturation readout 
power. Near this power the quasiparticle 
lifetime decreases (not shown). 
 
D
 
T
quasiparticle lifetime decreases with 
decreasing temperature for all devices below 
650 mK. This represents a strong deviation 
from recombination theory for homogeneous 
superconductors [4], since the quasiparticle 
recombination time is expected to 
monotonically increase when cooling down 
and reaches values in the order of a second 
around 300 mK for bulk alpha phase 
tantalum, due to the exponential decrease in 
quasiparticle density.  

The lifetime a
 divided in three regimes: the 

saturation of the lifetime which is visible 
near 350 mK; the increase of the lifetime up 
to 650 mK which follows a T3-dependence; 
and the subsequent decrease of the lifetime 
when heating up above 650 mK. The latter 
can be fitted to the theoretical prediction the 
recombination time [4], when using a 
superconducting gap of 0.27 meV, much 
smaller than that of bulk tantalum which is 
0.67 meV.   

Upon
, the high energy of the 

quasiparticles generated is quickly 
downconverted, mostly via electron-phonon 
scattering. In turn these phonons generate 
quasiparticles, leading to the photon energy 
being downconverted to a large number of 
excess quasiparticles near the 
superconducting gap [7]. The 
downconversion is too fast to be observed 
by the resonator due to the response time. 

The quasiparticles recombine a
onons. As such, the effective lifetime 

is governed by the non-equilibrium 
quasiparticle and phonon densities and 

corresponding timescales, such as the 
recombination, Cooper pair breaking and 
phonon escape rate [5].  

However in a sup
formities give rise to subgap states, 

quasiparticles can become trapped and 
become localized in a macroscopic 
depression of the order parameter or a single 
state. Non-uniformity can arise from 
vortices, trapped flux, magnetic impurities 
and metallic oxides. For example, niobium 
is known to have superconducting oxides 
with a critical temperature as low as 1.4 K 
[8], which could explain the choice of gap in 
the fit to Ref. 4. Detrapping can occur due to 
phonon absorption or scattering with a 
quasiparticle [9,10]. 

The fact that
between devices at the same chip 

suggests the existence non-uniformity in the 
superconducting layer. The exact nature and 
origins of the traps in our devices is 
unknown. The reproducibility of the result 
after heating above the critical temperature 
rules out trapped flux. 

We assume tha
uperconducting properties gives rise 

to an additional quasiparticle loss channel 
that is much faster. 

Qualitativel
 with increasing temperature has 

been observed also in STJs [10]. The 
responsivity increases with a factor of two 
due to the lifetime up to around 600 mK, 
above which it decreases again. These 
junctions consist of two tantalum electrodes 
with an Al/AlOx barrier in between. 
Quantitatively, the value of the quasiparticle 
lifetime of up to 45 μs lies in the range of 5-
80 μs which has been reported for tantalum 
in the literature [11-14]. 

The fact that si
served in tantalum devices with a 

dissimilar geometry and material 
composition suggests that the non-
uniformity leading to our observation has a 
general character. 
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Conclusion 
 
We have measured the quasiparticle lifetime 
in tantalum on silicon quarter wave KIDs 
using optical pulses for temperatures down 
to 350 mK. We find that the quasiparticle 
lifetime saturates at low temperatures 
around 25 μs, grows with increasing 
temperature and reaches a maximum value 
of up to 45 μs at a temperature of 650 mK, 
and drops at higher temperatures. There is 
no optical pulse length and readout power 
dependence of the lifetime and there is no 
significant difference between resonators 
covered with and without a 10 nm thick 
SiOx layer. 

We attribute the low temperature 
behavior of the lifetime to quasiparticle traps 
arising from non-uniformity in the 
superconductor. The nature of these traps is 
unknown and deserves further attention. 
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