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Highly Packaged HEB Receivers
Using Three-Dimensional Integration

F. Rodriguez-Morales, S. Yngvesson, D. Gu, N. Wadefalk, K. Fu, C. Chan, J. Nicholson, and E. Gerecht

Abstract— We report a remarkable progress in the develop-
ment of highly packaged heterodyne receivers using NbN HEB
mixers and MMIC IF amplifiers. We are presenting a record IF
noise bandwidth of 8 GHz (measured for a ~700 GHz LO) using
a lumped element matching network for the input of the IF pre-
amplifier. Further, we describe the first three-dimensional (3-D)
integration of a sub-millimeter mixer and its pre-amplifier using
a simple vertical feed-through structure. Thereby, we achieve
a volume shrinkage of at least 20 times, accompanied by a
mass reduction of 15:1. These receivers bring promise for the
implementation of large-format arrays for heterodyne terahertz
sensing applications.

I. INTRODUCTION

EB type terahertz heterodyne receivers employing NbN

devices have been discussed since soon after the first
ISSTT symposium. Several such receivers have been operated
as ground-based astronomical observation systems and the
HIFI instrument that is planned for launch in 2008 includes
several HEB mixers [1]. So far no such system has used
HEB heterodyne detectors in focal plane arrays, however,
whereas arrays of direct detectors are commonly employed.
Present HEB mixer receivers are not compact enough to be
suitable for packaging in closely spaced arrays, and must
be developed further, specifically with arrays in mind. Our
group demonstrated the first prototype heterodyne focal plane
assembly above 1 THz, a linear array of three elements
[2]. Other (non-HEB) work on integrated mixer receivers
has been documented in [3]-[5]. The present paper describes
development of the HEB integrated receivers into even smaller
units, with the final goal being the realization of a compact,
multi-element two-dimensional (2-D) array. The immediate
objective in the present study has been to develop methods for
quantitative design of a receiver consisting of a quasi-optically
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coupled HEB device directly integrated in the same small
block with an MMIC IF amplifier. For this purpose we first
performed accurate broadband measurements and modeling of
the impedance of the HEB device as a function of IF, and
then used the model so obtained, together with CAD models
for the MMIC amplifier and other circuit components for
the design of several integrated receivers. By improving the
broadband matching of the HEB to the MMIC we in one case
demonstrated an 8 GHz receiver noise bandwidth. Further, our
design methodologies have enabled us to significantly reduce
the footprint of the integrated receivers using 2-D and 3-D
packaging techniques [6].

II. SMALL SIGNAL IF IMPEDANCE CHARACTERIZATION

We performed an extensive set of impedance measurements
on several mixer devices fabricated from thin NbN film (3.5—
4 nm thick!) sputtered on a 350 um thick silicon substrate.
The measurements were completed using an automatic net-
work analyzer (ANA). The active NbN area was 0.4-0.5 pym
long by 2 pm wide. We used various LO drive frequencies
ranging from 694 GHz up to nearly 2 THz, which cover
regions of the electromagnetic spectrum below and above
the superconducting bandgap frequency of NbN for typical
film parameters. The local oscillator source is the same COs-
pumped far infrared laser system used in previous studies [8],
[9]. The HEBs were quasi-optically coupled using monolithic
log-periodic antennas in combination with a 4 mm diameter
elliptical lens made of silicon. This antenna/lens configuration
was designed to operate from 250 GHz to 3 THz. The
IF frequency range covered by the ANA was 300 kHz to
8.5 GHz. This frequency range is sufficient to characterize the
typical IF bandwidth for all phonon-cooled NbN HEB mixers
developed to date. The measurements required an initial one-
port short-open-load (SOL) calibration inside the cryostat. The
calibration was done by putting each of the standards into
the dewar in three consecutive thermal cycles and measuring
the corresponding S;; using the network analyzer. The power
level from the network analyzer was -50 dBm. We designed
a customized test vehicle to mount the devices under test
(DUTs). This fixture provides the required biasing signals
through a broadband resistor network constructed from quartz
wire-bondable components. Fig. 1 shows an illustration of the
experimental setup used for these measurements, including a
picture of the broadband test fixture.

I'The nominal thickness of the NbN film was given by the manufacturer
(Moscow State Pedagogical University, MSPU) as 3.5 to 4 nm. Recent TEM
measurements have yielded a thickness of 5-6 nm for similar films [7].
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Fig. 1. Experimental setup for small signal IF impedance measurements.

A. Raw Impedance Data

Fig. 2 shows an example of the measured raw reflection
coefficient for one specimen as obtained with the network
analyzer. This is the actual source impedance seen by the
low-noise amplifier at a particular operating point, including
parasitic reactances in the circuit derived from the antenna
structure, wire-bonds, transmission line transitions, etc. The
HEB impedance (controlled by regulating the amount of
incoming LO and dc power) determines the main contribution
to the total input reflection coefficient of the IF LNA. However,
parasitic reactances in the circuit should not be neglected
when designing the appropriate input matching network for
minimum noise. As will be discussed in the next section,
data obtained in this fashion is very useful when designing
integrated HEB-based down-converters.

B. De-Embedded Impedance Data

The HEB IF small signal impedance was carefully de-
embedded from the the measured reflection coefficient (S11).
The preceding SOL cryogenic calibration was used in com-
bination with the S-parameters of two measured known loads
(superconducting and normal state of the bolometer, respec-
tively) to obtain a circuit model for the fixture parasitics.
We then subtracted the effect of these parasitics from the
measured data using standard computer aided design (CAD)
tools. Using the de-embedded data we studied the impact of
the LO frequency and biasing conditions in the IF impedance
for the first time, providing substantially extended information
beyond that obtained in previous measurements such as those
presented in [7], [9]-[12]. The de-embedded impedance results
were compared against two different models, namely the
Standard model [10] and the Nebosis-Semenov-Gousev-Renk
(NSGR) model [13]. These two formulations are convenient
since analytical calculations can be performed of important
microwave and terahertz parameters. They do not predict
parameters such as conversion gain as accurately as the hot-
spot model [14]-[16], however.

Fig. 3 shows and example of the fitting of the Standard
and NSGR formulations with respect to the de-embedded
experimental data for one of the DUTs (designated #D). The
Standard model fits the experimental data quite well specially
for 694 GHz, where the LO, dc, and microwave power are
absorbed in same central hot-spot region of the device. The

Fig. 2. Typical measured raw impedance data. The blue circle indicates
constant standing wave ratio (SWR).
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Fig. 5. Integrated receiver module with lumped-element mixer/LNA coupling.

NSGR model does also fit our measured data but requires the
use of three time-constant parameters whereas the Standard
model only needs one. The NSGR model has advantages in
terms of physical interpretation of the time-constants. The
interested reader is referred to ref. [17], where further in-
formation about our modeling efforts is provided along with
additional measured data. We have shown empirically that
the IF frequency dependence of the IF impedance, conversion
gain, output noise and the receiver noise temperature for at
least two devices are well modeled by the Standard model
formulation (e.g. Fig. 4). We give experimental evidence of
this statement being true for the IF frequency range required
for practical integrated receiver design.

IIT. INTEGRATED RECEIVER DESIGN
A. Lumped Element Coupling

In order to realize the best trade-off between low-noise
figure, wide bandwidth, and size; the coupling between the
HEB mixer output and the HEMT IF LNA input needs to
be studied. This analysis evidently requires the knowledge
of the impedance presented by the HEB and surrounding
circuitry, which was the center of our discussion in the
previous section. Once this source impedance is known, an
appropriate input matching network (IMN) can be designed
to transform the HEB IF output impedance into the intended
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Fig. 3. Comparison of modeled versus de-embedded impedance of device #D measured for a fixed operating point (1 mV, 40 pA) for different LO frequencies:
— Measured, -x- Modeled (NSGR), - - Modeled (Standard model).

12000 80
= 70 1
< .
=< 40000 | Measured &
a — Modeled S 60 1
a ]
S 8000 £ 50
5 o <
& 6000 4 f 5 5 40
o] B o
=3 4 = |
£ 4000 1 2 30
@
2 2000 - 8 32 4 * Measured 20 1 | = Measured
2 :34 1| —Modeled 10 4 | —Modeled

0 T T T T T T T T T -36 0 .
o 1 2 3 4 5 6 7 8 9 10 0.1 1 10 01 1 10
IF Frequency [GHz] IF Frequency [GHz] IF Frequency [GHz]

Fig. 4. Modeled versus experimental parameters as a function of IF frequency for a different sample (#C). This data was obtained for fr, o= 1.04 THz using
an optimized lumped-element coupling circuit between the hot electron mixer and the IF amplifier. The empirical figures for the mixer conversion gain and
output noise are estimated from the U-factor and the receiver noise temperature. The modeled curve is obtained using the methodology described in [17].
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TABLE I
PERFORMANCE OF TWO MIXER SAMPLES MEASURED USING THE
LUMPED-ELEMENT INTEGRATED RECEIVER MODULE

Sample LO TR,DSB Beﬁ' BN
[THz] K] [GHz] | [GHz]

#C 0.694 825 6 3.5
1.04 1160 3.25 2.4

1.89 3300 4.5 32

2.50 4450 5 3.3

#D 0.694 1100 8 5.5
1.04 1600 6 3.8

1.89 2700 3.2 2.0

optimum source impedance Z,,; required by the LNA.

Since the input impedance of a HEMT-based amplifier is
mainly dominated by the gate-to-source capacitive reactance
of the first transistor stage, the IMN should behave as a
series inductor. One such IMN has already been successfully
implemented by our group in the form of a multi-section
microstrip transformer [18]. The use of a lumped-element
matching network with wire-bonds as inductive elements
to further reduce the down-converter size was proposed in
previous editions of the ISSTT proceedings [8], [9]. As
shown in Fig. 5, we have recently been able to successfully
implement such a coupling circuit. The design methodology
employed as well as the measured performance of this receiver
implementation are discussed in great detail in [17]. In the
proposed design methodology, we used the Standard model
formulation for the mixer with parameters extracted from the
impedance measurements, in combination with CAD models
for the IF and dc circuitry to find theoretical estimates of the
down-converter performance (e.g. Fig. 4). The estimations are
self-consistent in the sense that they account for the noise
produced by an MMIC LNA when an HEB is connected at its
input, including fixture parasitics. Fig. 6 shows the variation
of the double sideband receiver noise temperature, TR psB,
as a function of IF frequency for two different operating
points measured on sample #D. The biasing points were the
optimum (1.5 mV, 35 pA) and (1.0 mV, 35 pA) using an LO
frequency of 694 GHz. This plot shows a remarkable noise
bandwidth of 8 GHz for the lowest-noise quiescent point. The
narrower bandwidth observed at a slightly lower operating
voltage agrees with the expected lower electron temperature,
0, caused by a lower dc-power dissipated at bias point 2.
We have also measured TR psp for other LO frequencies
(1.04 THz, 1.89 THz, and 2.5 THz) and other devices installed
on the same down-converter block. As shown in Table I%, the
demonstrated noise and bandwidth?® figures obtained are very
competitive, in agreement with theoretical predictions.

2A different mixer sample (designated #C) was used for this comparative
assessment.

3The receiver bandwidth performance was quantified in terms of the IF
noise bandwidth, By, and the effective IF bandwidth, B.g. By is the
frequency at which Tk psp increases by a factor of two with respect to
its lowest frequency value. Beg, is the bandwidth of an ideal receiver with
perfectly sharp passband that yields the same output noise as the system being
characterized [18].

6000
10
I~ 8 E Noise Bandwidth
I 81 W Effective Bandwidth 7
< 5000 | £ | 545
y £
8 4000 {| & :|
g o
% 3000 - ! Bias Point 2
@
Q
£
2 2000 -
Q
2
o
Z 1000 - ® Bias point 2 (1.0mV, 35uA)
® Bias point 1 (1.5mV, 35uA)
O T T T T
0 2 4 6 8 10
IF Frequency [GHZ]
Fig. 6. Double-sideband receiver noise temperature measured at

fr.o=0.694 THz (sample #D) for two different bias points: i) 1.5 mV, 35 pA,
and ii) 1.0 mV, 35 pA.

B. Three-Dimensional Integration

We have mentioned that efficient receiver packaging tech-
niques are essential to the development of close-fitting arrays.
By far, the most efficient packaging scheme developed to date
is three-dimensional integration. The benefits of 3-D packing
have been thoroughly described in the literature (e.g. [19],
[20]). We have recently explored the use of such techniques
to realize an ultra-compact module with an HEB mixer and
its corresponding IF amplifier stacked across the z-direction.
A straightforward vertical microwave transition has been de-
veloped to convey dc and IF signals from the HEB mixer
chip to the IF/DC circuitry, both of which are located on
different planes. The transition provides impedance matched
coupling between the coplanar waveguide (CPW) structure
on the HEB chip and the microstrip-based MMIC IF LNA.
The three-terminal vertical transition was designed based on
ideas proposed within the electronic packaging community
(e.g. [20]-[22]). We used full wave electromagnetic CAD
tools (CST Microwave Studio) to simulate and optimize the
performance of the IF/DC interconnect. The concept of the
packaged down-converter is illustrated on the left inset of
Fig. 7. Aside from the vertical feedthrough itself, the package
consists of three multi-level blocks:

o The device block, where the quasi-optically coupled HEB

mixer chip is mounted.

o The IF/DC block, where all the IF circuitry (MMIC
IF LNA included) as well as dc-biasing networks and
connectors are installed.

o The top lid, which is used to provide environmental,
mechanical, and electromagnetic shielding for the com-
ponents inside the package.

A photograph of the assembled module without cover is
shown in the right inset of Fig. 7. The stacked module
technique provides a volume reduction of 20 times with a
corresponding mass reduction of 15x. The wide bandwidth
performance is preserved at the expense of slightly lower sen-
sitivity in this prototype version. A comparison of performance
between the 2-D and 3-D down-converter implementations is
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Fig. 7. Integrated receiver module with vertical IF interconnets: (left) concept
and (right) photograph.

shown in Table II. For more details on the design consider-
ations for this packaging approach the reader is referred to

[6].

IV. CONCLUSION

Following a series of previous papers by the authors, we
have presented our most recent progress in the development
of highly-packaged down-converters. We briefly describe how
we have been able to accurately measure and model the
small signal IF impedance of phonon-cooled HEB mixers
over a wide IF frequency range and for more than one LO
frequency. We have used parameters extracted from these mea-
surements in combination with circuit models for the MMIC
IF LNA to achieve the close and direct integration of the
mixer/LNA combination. For this purpose, a compact, lumped-
element matching circuit is proposed and implemented. We
have accomplished a high degree of convergence between
measurements and modeled performance as per our design
methodology. Several integrated receivers for terahertz fre-
quencies have been designed using this modeling approach
and have been successfully tested, including what is believed
to be the first 3-D terahertz receiver. The stacked module
technique provides an outstanding volume and mass reduction
while maintaining good electrical performance. The ultimate
goal of this investigation was to make a large array a feasible
architecture. We believe that a medium size array is now within
reach.
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TABLE 11
PERFORMANCE COMPARISON BETWEEN THE 2-D AND 3-D INTEGRATION
RECEIVER IMPLEMENTATIONS USING MIXER SAMPLE #C

LO Configuration | TR DSB Besr BN
[THz] (K] [GHz] | [GHz]
0.694 2-D 825 5.6 3.2

3-D 975 5.5 3.15

1.89 2-D 3300 4.5 3.2

3-D 4200 4.6 3.0
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