
 

Sensitivity of an NbN hot electron bolometer 
based heterodyne receiver at 4.3 THz 

  
Abstract— We have characterized a heterodyne receiver 

based on an NbN hot electron bolometer integrated with spiral 
antenna as mixer and a CO2 pumped gas laser at 4.3 THz as local 
oscillator (LO). We succeeded in measuring the receiver output 
power, responding to the hot/cold load, as a function of bias 
voltage at optimum LO power. From the resulted receiver noise 
temperature versus the bias voltage, we found a DSB receiver 
noise temperature of 3500 K at a bath temperature of 4 K, which 
is a minimum average value.  This is the highest sensitivity 
reported so far at frequencies above 4 THz. 
 
 

I. INTRODUCTION 
 
 Hot electron bolometer mixers become the chosen 
technology for heterodyne receivers far above 1 THz. They 
have been used for the two highest frequency bands in the 
Heterodyne Instrument for Far Infrared (HIFI) on the 
Herschel Space Observatory, covering a frequency range of 
1410-1910 GHz [1]. For future space missions, 2-6 THz high 
resolution spectroscopic surveys are highly desirable for 
astronomical and atmospheric studies. However, the 
performance of HEB mixers at frequencies above 3 THz, 
namely super-THz frequencies, has not been measured 
extensively and only few studies have so far been reported 
[2,3]. 

Our long-term research goal is to develop sensitive 
heterodyne receivers operating at super-THz frequencies using 
NbN HEBs as mixers and quantum cascade lasers (QCLs) as 
local oscillators [4,5]. To separate the problems associated 
with either HEBs or QCLs, we use a gas laser, commonly 
used in the laboratory, as a local oscillator at 4.3 THz to 
characterize the HEB mixers. 
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II. HEB MIXER 
 
 The HEB used here is a 2 μm wide, 0.2 μm long and 5 nm 
thick NbN bridge on a high resistive Si substrate. We applied 
NbTiN/Au bilayer pads to contact the NbN bridge to a spiral 
antenna. Previously we have demonstrated excellent receiver 
sensitivities at 1.6, 2.5 and 2.8 THz using mixers with the 
same contact structures [5-7]. The HEB has a room 
temperature resistance of 80 Ω, a critical temperature of 10 K, 
and a critical current of 180 μA at 4.2 K. It is integrated with a 
spiral antenna, with a tight winding design close to the HEB. 
The antenna is circular polarized and has a very wide RF 
bandwidth allowing the detection of radiation up to 6 THz [8]. 
Fig. 1 shows an SEM micrograph of a similar HEB mixer. 
Details of device fabrication and DC characterization can be 
found elsewhere [9].  
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Fig 1. SEM micrograph of a spiral antenna coupled NbN HEB  

III. HETERODYNE MEASUREMENT SETUP 
 

Fig. 2 shows a schematic view of the measurement setup. 
THz radiation is coupled to the mixer using a standard quasi-
optical technique. The Si chip with the HEB is glued to the 
backside of an elliptical, anti-reflection coated Si lens. The 
coating on the lens is 14 µm thick Parylene C and optimized 
for 3.5 THz. Because of this, it improves the coupling 
efficiency only by about 10% at 4.3 THz in comparison to an 
uncoated one. The lens is placed in a metal mixer block, 
thermally anchored to the 4.2 K cold plate. 

The local oscillator is a CO2 pumped gas laser. The 
combination of the 9P34 line of the CO2 laser and methanol in 
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the FIR laser gives about 3 mW of power at 4.3 THz (λ ≈70 
μm). The laser beam is collimated with a HDPE lens and is 
further reflected to the HEB cryostat by a 3.5 μm thick Mylar 
beam splitter. The blackbody radiation from a slab of 
Eccosorb at 295 K (hot load) and 77 K (cold load) is used as a 
calibration source. This signal is combined with the laser 
beam by the beam splitter and passes through a 1 mm thick 
HDPE window at room temperature and a metal mesh heat 
filter (QMC Ltd.), mounted on the 4 K shield of the HEB 
cryostat. 

The IF signal, resulting from mixing the hot/cold load 
signal with the LO, is amplified first using a cryogenic low 
noise amplifier and then room-temperature amplifiers. This 
signal is filtered at 1.4 GHz in a band of 80 MHz. The entire 
IF chain has a gain of 71 dB and a noise temperature of 7 K. 

 

 
Fig 2. Measurement setup 

IV. HETERODYNE MEASUREMENT RESULTS 
 
Fig. 3 shows a set of current-voltage curves of the HEB for 
different absorbed LO power levels. The optimum operating 
region, which gives the highest sensitivity is around 30-35 µA 
and 0.5-1.0 mV bias point. The optimum absorbed LO power 
is about 230 nW, determined by using the isothermal 
technique [10]. 
 To obtain the receiver noise temperature we apply a 
standard Y-factor method, taking the ratio of the receiver 
output power responding to the hot/cold load. It is worthwhile 
to note that the equivalent temperature of a blackbody at such 
high frequencies is substantially different from its physical 
temperature. Using the Callen-Welton definition [11], at 4.3 
THz the equivalent temperatures of a blackbody at 77 and 295 
K are 118 and 307 K respectively. 
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Fig 3. Current-voltage curves of the HEB mixer for different pumping level, 
taken at 4.2 K. The optimum operating point is around 0.5-1 mV and 30-35 
µA where the absorbed LO power in HEB is about 230 nW. 
 

 
Fig. 4 shows the measured receiver output power, 

responding to the hot/cold load, versus the bias voltage at 
optimum LO power. Fig. 5 gives the double sideband (DSB) 
receiver noise temperature, calculated using the data plotted in 
figure 4.  If we focus on the noise temperature curves in Fig. 
5, it is clear that the data is noisy.  We attribute the noise to 
the fluctuations in the output power of the gas laser. It is 
known that the lasing in the cavity of a gas laser is sensitive to 
the fluctuations of temperature and gas pressure. Thus, 
stabilizing the gas lasers in general is cumbersome and 
therefore, it is difficult to record the IF output power versus 
bias voltage at constant LO.  We succeeded in measuring such 
curves, suggesting that we have achieved reasonable power 
stability of the gas laser. However, the power is still not stable 
enough to accurately determine the Y-factor without 
averaging. 

 In our experiment we observed correlations between the 
fluctuations in the IF output power and those in the current of 
the HEB. The latter reflects the LO power fluctuations.  To 
quantify the receiver sensitivity, we take the average value of 
measured Y factor and the receiver noise temperature at the 
optimum operating point. We found the highest Y-factor of 
0.22 dB around 0.8 mV. This corresponds to a DSB receiver 
noise temperature of 3500 K in figure 5. To the best of our 
knowledge, this is the first published data, which shows the 
noise temperature of a HEB as a function of bias voltage using 
a gas laser as LO at super-THz frequencies and the value of 
3500 K is the highest sensitivity reported beyond 4 THz in the 
literature [12].  

We find the single sideband mixer conversion loss to be 
about 13 dB. In our case the total optical loss is estimated to 
be 5-6 dB in the optical path from the hot/cold load to the 
HEB, from which 1.7 dB is due to the cryostat window and 1 
dB due to the air (at 40% relative humidity there is 4 dB/m 
loss in the air at 4.3 THz). This suggests that the receiver 
sensitivity can be improved by reducing these losses. 
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Fig.4. Receiver output power responding to the hot (295 K) and cold (77 K) 
load as a function of bias voltage at optimum LO power. The difference in Pout 
between the two curves determines the receiver noise temperature. The 
fluctuations in the measured output power are caused by LO power 
fluctuations. 

V. SUMMARY 

 In summary, we succeeded in characterizing a NbN HEB 
mixer at 4.3 THz using a CO2 pumped gas laser as local 
oscillator. We measured the receiver output power, 
responding to hot/cold load, as a function of bias voltage of 
the HEB, which allows determining the receiver noise 
temperature at different bias voltages. The averaged lowest 
receiver noise temperature is 3500 K, which is uncorrected for 
any optical loss. Our experiment suggests that it is challenging 
to obtain accurate sensitivity data due to the power 
fluctuations of the gas laser at the super-THz frequencies. We 
believe that THz quantum cascade lasers can overcome this 
issue and have potential to replace currently used gas lasers.  
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