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Abstract— CASIMIR, the Caltech Airborne Submillimeter 
Interstellar Medium Investigations Receiver, is a far-infrared 
and submillimeter heterodyne spectrometer, being developed for 
the Stratospheric Observatory For Infrared Astronomy, SOFIA. 
CASIMIR will carry out observations in the frequency range 
from 500 GHz up to 1.4 THz, with extremely high spectral 
resolution, of order 106.  Utilizing recent advances in SIS detector 
development, CASIMIR will cover this region of the spectrum 
with unprecedented sensitivity.  CASIMIR is extremely well 
suited to observe the warm, ~100K, interstellar medium, 
particularly water lines, in both galactic and extragalactic 
sources. We present an overview of the instrument, its 
capabilities, systems and expected performance. 
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1 INTRODUCTION 
 
CASIMIR, the Caltech Airborne Submillimeter Interstellar 
Medium Investigations Receiver, is a far-infrared (FIR) and 
submillimeter, very high-resolution, heterodyne spectrometer. 
It is being developed as a first generation, Principal 
Investigator class instrument for the Stratospheric Observatory 
For Infrared Astronomy, SOFIA1,2.  Observations with 
CASIMIR on SOFIA are expected to begin in 2010 and the 
instrument should be available to guest investigators soon 
after.  It is anticipated SOFIA will eventually achieve a flight 
rate of up to 160 flights per year, with a lifetime of 20 years. 
 
Initially, CASIMIR will cover a frequency range from 
500 GHz up to 1.25 THz.  A 1.4 THz band will be added soon 
after initial operations and the frequency coverage may 
eventually be expanded up to 2 THz. It will be capable of 
covering this range at a resolution of ~106. 
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The FIR/submm is extremely important for the investigation 
of both the galactic and extragalactic warm (T~100 K), 
interstellar medium. This material is heated by shock waves or 
UV radiation, phenomena that are often associated with star 
formation or other high energy events, e.g. supernovae or 
active galactic nuclei. This excited material then re-emits 
either as dust continuum radiation or gas line emission.  
CASIMIR will be able to utilize recent advances in the 
sensitivity of superconducting mixers to study the 
fundamental rotational transitions of many astronomically 
significant hydride molecules, which cannot be observed with 
ground based telescopes. 

2 FREQUENCY BANDS 

2.1 Initial Channels 
 
Four frequency channels will be available for initial 
observations.  Table 1 shows a selection of significant spectral 
lines within these bands.  It is expected that initial 
observations will concentrate on lines from this list. Almost 
all of these lines are completely unobservable from the 
ground. 

2.2 Water 
 
As can be seen from Table 1, CASIMIR is particularly well 
suited to investigate the abundance and excitation of 
interstellar water, using a number of transitions of H2

18O.  
While oxygen is the third most abundant element, its 
chemistry in interstellar clouds is poorly understood, since the 
atmosphere is opaque to many of its key species, such as O, 
O2, H2O, H3O+ and OH. Gas phase water also has an 
important role in the energy balance of molecular clouds due 
to radiative cooling or heating through FIR/submm rotational 
transitions3.  Figure 1 shows the rotational energy levels for 
H2

18O, indicating the large number of low excitation level 
transitions visible to CASIMIR.  Figure 2 shows results from 
observations of the 547 GHz H2

18O line obtained on the 
Kuiper Airborne Observatory (KAO) and predictions of the 
line intensities that will be obtained for the same source with 
CASIMIR. 
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    Freq. 
    Band 
    GHz 

 
 Species 

 
    Line 
    Freq. 
    GHz 

 
% Atmos. 
 Trans.         
@12km 
 

 
500-600 
 

 
   H2

18O 
    CH 
    NH3 

    CO 
 

 
    547 
532,536 
   572 
   576 
 

 
      81 
   98,97 
     94 
     80 

  
700-800 
 

 
  H2

18O 
 

 
   745 
 

 
     82 
 

 
900-1050 

 
   H3O+  

   CH2 
   NH 
  H2

18O 
   CO 

 
   985 
   946 
   975 
   995 
  1037 
 

 
     65 
     99 
     96 
     73 
     94 
 

 
1050-1250 
  

 
  H2

18O 
 
   HF 
 

 
1137,1181 
1189,1199 
  1232 
 

 
  70,75 
  87,81 
    30 
 

  

Table 1. A list of selected significant species and lines that will be 
observed with the first 4 frequency bands of the CASIMIR 
instrument. The atmospheric transmissions shown are for typical 
SOFIA operating altitudes, ~4o,ooo ft. or 12 km.  At the Caltech 
Submillimeter Observatory (CSO), on the summit of Mauna Kea at 
4.1 km altitude, of all the lines shown, only two have an atmospheric 
transmittance more than 0%: CH (1%) and CH2 (13%). 

 

 

Figure 1.  CASIMIR’s coverage of the rotational energy levels of the 
H2

18O molecule.  The first 4 bands of CASIMIR will be able to 
observe 9 transitions, including several low temperature lines, 
compared to only 2 relatively high energy transitions observable at 
the CSO, denoted by asterices. 

 
 

 
 
 

                 
                  

 
Figure 2.   Comparison of H2

18O line sensitivities obtained with the 
Kuiper Airborne Observatory (KAO) and expected for CASIMIR.   
The top part of the figure shows 547 GHz observations of SgrB2, 
obtained on the KAO.  The bottom part shows predicted performance 
for observations of SgrB2 with CASIMIR on SOFIA, for several 
lines.  SgrB2 was modeled as a sphere, nH2(r)~r -2 and T(r)~r -0.5, 
which matches existing CO, dust and H2

18O data. 

2.3 1.4 THz Band and H2D+ 
A 1.4 THz band is expected to be available soon after 
CASIMIR begins observations on SOFIA.  This band will 
concentrate on the H2D+ 1370 GHz ground state line.  The 
H2D+ ion is of particular interest, since it is the deuterated 
version of H3

+, which is believed to be responsible for driving 
much of the chemistry of molecular clouds. The 372 GHz line 
for this species has now been detected from the ground in 
several protostellar cores with the CSO4 and the APEX 
telescope5, in the Atacama Desert. However, this line traces 
hot, dense gas, in which the chemistry is more complicated 
and the abundance is expected to be low. The 1370 GHz line 
is a better choice. The only previous search for this higher 
frequency line was made towards Orion, using the KAO, and 
resulted only in a tentative detection of an absorption feature6. 
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3 RECEIVERS, LOCAL OSCILLATORS AND INTERMEDIATE 
FREQUENCY SYSTEM 

3.1 Receivers 
 
The receivers for all of the first five CASIMIR  bands, up to 
1.4 THz, will be Nb/AlN/NbTiN Superconducting-Insulator-
Superconducting (SIS), quasi-optically coupled, twin-slot 
mixers. These mixers and their development are discussed in 
detail elsewhere in these proceedings7. 
 
The ongoing development is expected to significantly reduce 
the noise temperatures compared to present receivers at these 
frequencies. It is expected that this development will achieve 
double side band (DSB) noise temperatures of the order of 
3hu/kB for devices operating at less than 1 THz and 6hu/kB 
above. 
 
It is also expected that the useful frequency range of SIS 
mixers may extended up to 1.6 THz.  
 

3.2 Local Oscillators 
 
The Local Oscillators (LOs) for all bands are tunerless and 
use solid state devices exclusively.  The 550 GHz and 
1370 GHz LOs have already been acquired from Virginia 
Diodes8.  The 1200 GHz was developed at JPL and is similar 
to the LO developed for the same frequency on the Herschel 
satellite9.  The 750 and 1000 GHz LOs are under development 
by N. Erickson at the University of Massachusetts. 

 
All bands are driven from a single, commercial microwave 
synthesizer at a frequency in the range 26-40 GHz.  Any one 
of four bands can be selected via software at anytime during 
the flight, without mechanical adjustment or physical access to 
the instrument. 
 
As shown in Figure 6, up to two LOs can be mounted directly 
to the side of the cryostat.   The LO output is via a feedhorn.  
The output divergent beam is reflected through 90o and 
converted into a ~f/10 converging beam, by an off-axis 
elliptical mirror, mounted directly below the feedhorn (see 
Figure 7).  The beam passes through a window in the cryostat 
wall to a mylar beamsplitter mounted directly below the 
receiver elliptical mirror.  The beamsplitter directs a portion of 
the LO signal power towards the cryostat cold work surface, 
combining it with the incoming, astronomical signal. 

 

3.3 Intermediate Frequency System 
 
The intermediate frequency (IF) is the output signal from the 
mixer.  For all bands on CASIMIR, the IF bandwidth is 
defined to be 4 GHz, centered on 6 GHz. This wide frequency 
range will allow observation of the broad lines from 
extragalactic sources. 

The low noise amplifier in all bands is a Chalmers10 design.  It 
is a two-stage amplifier using InP transistors and has a 
minimum gain of 27 dB with a nominal noise temperature of 3 
K. It is mounted on the cold work surface of the cryostat, at 
LHe temperature, and is connected to the mixer via a 
cryogenic isolator, which reduces ripple in the IF due to 
impedance mismatches. 
        
The room temperature IF electronics consist of a 4-8 GHz 
amplifier module. This is an integrated unit developed under 
contract by CTT Inc.11, containing a low noise amplifier, a 
voltage variable attenuator (VVA), band defining filter, power 
amplifier, a directional coupler for monitoring the IF power 
level, and a switch for setting the IF power zero level. An 
integrated isolator at the input of the module minimizes 
standing wave ripples between the cryostat and amplifier 
module.  The nominal gain of the unit is 65 dB with a typical 
noise temperature of 300 K.  The bandwidth defined by this 
unit is shown in Figure 3.  A diode is connected to the monitor 
port for measuring the signal strength and adjusting the VVA 
to prevent the saturating internal amplifiers.  These units are 
mounted directly to the side of the cryostat (see Figure 6) and 
are designed for fully automatic operation. 

            
Figure 3.   IF bandwidth defined by bandpass filter within the room 
temperature IF unit. At a typical operating point, with the VVA set 
for 10 dB attenuation, the IF unit demonstrates excellent uniformity, 
<+/- 1 dB, across the entire 4 GHz bandwidth. 

4 MICROWAVE  SPECTROMETERS 

4.1 Wideband Analog Spectrometer (WASP2) 
 
The WASP212,13  was developed at the University of 
Maryland.  It is an analog correlator spectrometer, which in 
contrast to other spectrometer types, analyzes the entire 4 GHz 
bandwidth as a whole, without splitting the IF into sub-bands. 
This approach will be more suitable for wide extragalactic 
spectral lines. 
 

18th International Symposium on Space Terahertz Technology 

220



 

It is based on an analog correlator card, see Figure 4.  Signals 
propogate in opposite directions along two delay lines.  As  
WASP2 is configured as an autocorrelator, it is the same 
signal propogating along both lines.  At fixed points, i.e. fixed 
phase lags, along the delay lines, there are taps at which  a 
fraction of the signal from both lines are analog-multiplied 
together by active mixers.  The resolution of this spectrometer 
is defined by the physical spacing of these taps.  There are 16 
taps, therefore 16 lags per card, which corresponds to a 
resolution of 33.6 MHz per channel.  Observing at 1 THz, the 
resolution would be R=3x104 with a velocity resolution of 
10 km/s.   
 
The spectrometer contains 8 correlator cards, connected by 
cable delays, giving a total of 128 channels, continuously 
covering the full 4 GHz of the IF bandwidth.  Due to practical 
considerations, only the top 110 channels are available to the 
user for spectroscopy, limiting the full bandwidth to 3.7 GHz.  
 
 

 
 
 
Figure 4.  Schematic diagram of a part of the WASP analog 
correlator card. 
 
 

4.2 High Resolution  Digital Correlator, COBRA  
 
The COBRA14,15 digital correlator was developed at the 
Owens Valley  Radio Observatory (OVRO) to create a 4 GHz, 
6-antenna, correlator system. The design was re-used to create 
an 8 GHz, 8-antenna, correlator for the University of Chicago 
SZA array, and the OVRO hardware was recycled to create a 
1.5 GHz, 15-antenna, correlator system for the CARMA 
observatory. The COBRA boards are FPGA-based and use a 
6U compact PCI form-factor. 
 
A COBRA digitizer board contains two 1 GHz 2-bit samplers 
and four FPGAs, while a correlator board contains ten 
FPGAs. 
Each FPGA contains 5,000 logic elements (LEs), and can be 
configured to calculate up to 32-lags across 500 MHz 
bandwidth data.  Multiple FPGAs, and boards, can be 
cascaded to increase the number of lags calculated. For 

example, data from the dual samplers on a digitizer board can 
be fed to one or more correlator boards. 
For CASIMIR's application, the COBRA hardware will be 
configured as an autocorrelator.  Initially it will cover 2 GHz 
of the IF bandwidth, centered on 6 GHz.  The 2 GHz IF is 
filtered into four 500 MHz bands, and downconverted to the 
digitizer input band from 500 MHz to 1 GHz.  Each signal is 
then sampled at 1 GHz. The four sub-bands are processed by 
two digitizer boards and four correlator boards. 
 
Each sub-band is processed using 2 FPGAs on the digitizer 
board and 10 FPGAs on a correlator board. The resulting 
power-spectrum has 384-channels, giving a resolution of 
~1.3 MHz/channel.  While observing at 1 THz, this would 
correspond to a resolution of R=7.7x105 and a velocity 
resolution of 0.4 km/s. 
 
The channel resolution at 500 MHz can be improved by 
cascading the data through additional correlator cards, there 
are 320 lags per card. 
 
The FPGAs on the digitizer board can also be used to 
implement digital (FIR) filtering  Reducing the input 
bandwidth, reduces the parallelism required to processes the 
data, and increases the number of lags each FPGA can 
calculate (up to 64-lags).  At CARMA, the input bandwidth 
can be reduced to as a low as 2 MHz.   On CASIMIR, FIR 
filtering can be used to reduce the IF bandwidth from 
500 MHz, to 250 MHz or 125 MHz.  The mode changes can 
be made dynamically, take only a few seconds and could be 
carried out at any stage during the flight. 
 
The CARMA observatory has revised the COBRA hardware, 
creating a new dual-purpose CARMA board. The board 
contains an 8-bit, dual-1GHz digitizer, and four FPGAs16. The 
digitizer can be operated as two 1GHz digitizers, or interlaced 
to operate as a single 2GHz digitizer. A CARMA digitizer 
board consists of a CARMA board populated with the 
digitizer components, and four 90,000LE FPGAs, while a 
CARMA correlator board is populated with four 130,000LE 
FPGAs, i.e., a CARMA correlator board contains 
520,000LEs, whereas a COBRA correlator board contains 
50,000LEs.  The CARMA hardware offers an order-of-
magnitude increase in resolution, and we hope it will be 
available for use during initial observations with CASIMIR. 
 

5 INSTRUMENT CONFIGURATION AND STRUCTURE 
 
The general layout of the CASIMIR instrument is shown in 
Figure 5.  Two cryostats are mounted side by side on top of a 
box, which contains the relay optics, see Section 5.3.   
 
Two 19-inch racks are mounted directly behind this box.  All 
the critical electronics components are mounted in these racks, 
eg. the LO drive electronics and the microwave spectrometers.  
This ensures very short cable runs to the cryostat and prevents 
any differential rotation. All electronic systems for the 
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instrument are packaged as 19-inch bins, which will allow 
easy replacement of any unit.  
 

 
 
Figure 5.   The CASIMIR instrument. The instrument is mounted to 
the telescope via the round flange at extreme left of the figure.  This 
flange forms the pressure interface between the telescope cavity and 
the aircraft’s cabin.  The portion of the instrument shown is located 
in the cabin, with the observers.  The telescope beam enters the 
instrument through the center of this round flange, about 150 mm 
below the bases of the cryostats. The instrument structure is 
constructed almost exclusively of aluminum.  It is approximately 
1.5 m long by 1 m square. It weighs approximately 550 kg, including 
150 kg of electronics mounted in the racks, at the right of the figure. 
Approximately 150 kg more of ancillary electronics are located 
elsewhere in the aircraft cabin.  
 

5.1 Cryostats 
The cryostats are of conventional design with LN2 and LHe 
reservoirs.   For frequencies below 1 THz, the mixers will 
operate at ~4 K.  At higher frequencies, we will pump on the 
LHe reservoir to operate the receivers at ~ 2.5 K. 
 
There will be two cryostats per flight and up to two frequency 
bands in each cryostat, so there will be up to four bands 
available per flight.  Observations can be made with only one 
band at a time.  Any one of the four bands can be selected at 
anytime during the flight.  This selection is made by software 
alone, and does not require caging of the telescope, any 
mechanical adjustment or physical access to the instrument. 
 
As shown in Figures 6 and 7, all the components specific to an 
individual frequency band are integrated directly onto the 
cryostat,  eg. the LOs, IF systems and relay optics.  All 
systems mounted elsewhere on the instrument are used for all 
of the bands.  Therefore, changing the selection of the four 
bands which are to be used on a given flight only requires 
swapping cryostats, which could easily be carried out between 
flights.  Also, any upgrades and improvements to the bands 
could be accomplished completely independent of the rest of 

the instrument.  This will allow continuous upgrades to the 
frequency bands, throughout the life of the instrument.   
       

 
 
Figure 6 The  CASIMIR Cryostat.  The cryostat contains 5 liters each 
of LN2 and LHe and has a 250 mm diameter cold-work-surface.  This 
is the approximate, maximum, practical diameter for cryostats that 
can be used in the side-by-side configuration for SOFIA.  It is 
600 mm high  and weighs ~40 kg.  The LOs, IF system, receiver and 
LO bias electronics are mounted directly to the side of the cryostat.  
The electronics for the cryogenic amplifier bias and mixer 
electromagnet current are also mounted on the cryostat but are not 
shown in this view.  The rather impressive array of plumbing fixtures 
on the top of the cryostat prevents the formation of ice plugs or the 
rupture of the cryogenic reservoirs.  This design was required to 
obtain airworthiness certification of the cryostat by the Federal 
Aviation Administration.  The two elliptical mirrors of the relay 
optics, mounted on the base of the cryostat, can be seen at the 
extreme bottom of the image. 
 
 

5.2 Optics 
Figure 7 shows a schematic of the relay optics, which uses 
two off-axis elliptical mirrors to match the incoming telescope 
beam to the output beam of the mixer.  Including the 
telescope, there are five mirrors at ambient temperature and 
one cryogenically cooled mirror, EM1, in the optical train.  
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This includes two plane mirrors, the fully reflective tertiary 
and a plane mirror in the Optics Box, see Figure 8.   
The window in the base of the cryostat is the only pressure 
boundary in the optical path from the telescope.  Therefore, 
this window and a lens in the mixer assembly are the only 
transmissive elements in the entire optical train from the 
telescope to the receiver. 
 
The optical designs for all bands have an edge taper of 10 dB.  
Initially, SOFIA will have an oversize tertiary, which will 
produce an aperture efficiency of 0.64.  A smaller tertiary may 
be available in the future, which will improve the aperture 
efficiency to 0.71.   Main beam efficiency is calculated to be 
0.77.  The largest beam size is 0.8 arcmin, at 550 GHz.    
   

                      

 
Figure 7 CASIMIR Relay and LO Injection Optics.  The top image 
shows the location of the elliptical mirrors mounted on the cryostat.  
The bottom part  of the image shows a schematic of the optics.  In the 
lower image, the up down orientation is reversed and the units on the 
scale are mm, with the origin at the center of EM1, the elliptical 
mirror mounted on the cryostat cold-work surface.  EM2 is the 
elliptical mirror mounted below the base of the cryostat, visible in the 
left image.  EM2 is in the plane of the telescope beam, it converts the 
incoming, diverging f/20 telescope beam into an intermediate f/10 
beam and reflects it through 90o, through a window in the base of the 
cryostat.  LOM is the LO elliptical mirror, which matches the LO 
output beam to the incoming intermediate beam.  EM1 converts the 

intermediate beam to a converging ~f/4.5 beam, which matches the 
output beam of the mixer. 

5.3 Optics Box 
 
Figure 8 shows a 3D model of the Optics Box, which is the 
mount for the cryostats and contains all the optics common to 
all frequency bands.  The central feature is a plane mirror, 
which can be commanded to rotate through  +/- 180o in the 
plane of the telescope and up to +/-5o in tilt.  This rotating 
mirror directs the telescope beam to one of the four elliptical 
mirrors mounted on the two cryostats, selecting the frequency 
band.   
 
The calibration system consists of a chopper wheel at ambient 
temperature plus hot and ambient temperature loads.  Moving 
the rotating mirror by ~180o, allows any of the frequency 
bands to be first illuminated with the sky signal and then the 
signal from a known temperature calibration load. 
 
       

 
 
Figure 8  The Optics Box.  The cryostats are bolted directly to the lid 
of this box, which has been removed for this image.  The elliptical 
mirrors mounted on the base of the cryostats protrude trough an 
aperture in the lid and are located in the plane of the telescope beam.  
The two elliptical mirrors for one of the cryostats are shown in the 
left part of the image.  The box forms part of the pressure interface 
between the aircraft cabin and the exteriorand wall thickness varies 
between 0.5 and over 0.75 in.  The box interior is exposed directly to 
the telescope cavity, so that at altitude, the pressure inside is <200 Tr.  
The telescope beam enters from the front of the figure.  In this image, 
the rotating mirror, at the center of the figure, directs the telescope 
beam to the optical boresight, at the far right rear corner. The 
calibration chopper wheel and the two loads are shown in the rear of 
the figure.    
 
 
CASIMIR will use the fully reflective tertiary mirror on 
SOFIA’s telescope.  As a result, none of the observatory’s 
guiding cameras will be able to image the telescope’s focal 
plane.  Therefore, we have included an optical boresight 
camera, inside the Optics Box, for alignment and 
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beamfinding. The boresight can also be used as a pupil imager 
by moving a biconcave lens into the optical path.  The camera 
has a 6’x6’ field of view and uses a 1024x1024 pixel, optical 
wavelength CCD.  The rotating mirror also selects this 
camera. 
 
Stepper motors are used to move all the optical components. 
All of these motors are mounted inside the Optics Box and are 
controlled remotely via software.  There are only electronic 
feedthroughs mounted in the sides of the box, without any 
mechanical motions through the pressure boundary.  Physical 
access to the Optics Box will not be required at any time 
during the flight. 
 

6 CONCLUSIONS 
 
CASIMIR is a FIR/Submm, heterodyne spectrometer for 
SOFIA.  It is well suited for the studies of the warm (T~100K) 
interstellar medium, particularly water, measuring many 
significant lines unobservable from the ground.  Initially, the 
instrument will cover 500 to 1250 GHz, with a 1.4 THz Band 
to be added soon after.   Eventually the frequency coverage 
may be extended up to 2 THz.   CASIMIR will have 
unprecedented sensitivity in this frequency region, due to 
recent advancement in SIS mixer design.   
 
There will be up to 4 channels available per flight of the 
observatory.  Any one of these channels can be selected at any 
time during the flight. 

 
All bands will have an IF bandwidth of 4 GHz.  A medium 
resolution (R~3x104) spectrometer will simultaneously cover 
this whole band.  There will also be partial coverage of this 
band with very high resolution, up to ~106.   
   
The instrument design is extremely modular and will be able 
to continuously incorporate new hardware and accommodate 
future improvements in mixer, LO and microwave 
spectrometer technology, throughout the life of the 
observatory. 
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