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Abstract—A sideband separating SIS mixer with a 4–12 GHz IF 

band and covering the RF frequency range of 80 to 116 GHz has 
been developed. First junctions have been fabricated and tested as 
DSB mixers resulting in good and flat noise temperatures over RF 
and IF bands. 
 

Index Terms—sideband separating mixer, SIS mixer, wide IF 
band  

I. INTRODUCTION 

sideband separating mixer for 100 GHz based on single-
ended DSB mixers and an RF waveguide quadrature 

coupler has been developed. A schematic view of the mixer is 
shown in Figure 1. The two DSB mixer units are connected at 
their inputs and outputs to quadrature hybrids. The LO signal is 
split and applied in-phase to the two mixers through –23dB 
injection couplers. Since upper and lower sideband signals 
undergo different phase shifts, they appear separately at the 
two outputs of the IF quadrature hybrid [1]. 
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Figure 1. Schematic view of the sideband separating mixer. 

II. 2SB MIXER ASSEMBLY 
The RF 90° hybrid coupler, the two –23 dB LO couplers and 

the in-phase power divider as well as the two mixer blocks 
have been integrated into one E-plane split-block as shown in 
Figure 2. So, the 2SB mixer assembly consists of this 
combined RF coupler/mixer block and a commercially 
available IF 90° hybrid coupler. The IF outputs of the mixers 
are connected via semirigid cables to the inputs of the IF 
quadrature coupler.   
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Figure 2. RF coupler/mixer block realized as E-plane splitblock. 

A. RF quadrature coupler 
The RF quadrature coupler has been realized as branchline 
coupler [2]. The dimensions of the slots have been optimized 
using CST Microwave Studio [3]. The results of the 
simulations are shown in Figure 3. 
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Figure 3. RF quadrature coupler. 

B. LO coupler 
In order to decrease the noise contribution of the LO system, 
we decided to use a -23 dB LO coupler. With such a coupler 
we expect a noise contribution of 1.5 K compared to 6 K of a 
normally used –17 dB coupler. Just like the RF quadrature 
coupler the LO coupler has been realized as branchline 
coupler, but only with two slots.   
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III. DSB MIXER 

A. RF design 
The essential part of the mixer is a series array of 

superconductor-insulator-superconductor (SIS) tunnel 
junctions, which is deposited together with a supercon-ducting 
circuit onto a quartz substrate. This circuit comprises the 
antenna providing a full-height waveguide to suspended 
microstrip transition, the RF choke and the actual tuning circuit 
whose role is to compensate the junction capacitance and 
matching to the antenna impedance. Figure 4 shows the layout 
of one individual mixer chip with a size of 0.6 × 4.5 × 0.08 
mm3. These devices are fabricated by IRAM’s SIS group [4]. 

contact pads antennajunctions

rf choke tuning circuit  
Figure 4.  Layout of the mixer chip. 

The mixer chip is placed in a channel perpendicular to the 
waveguide axis and stretches only partly across the waveguide 
as can be seen in Figure 5. The full-height waveguide to 
microstrip transition is provided by an antenna structure that 
has been optimized using CST Microwave Studio [3]. The 
resulting antenna impedance is slightly capacitive, but its real 
part is almost constant over the operating frequency range (see 
Figure 6). 

rf input  
Figure 5.  Full-height waveguide to microstrip transition. 

 Z ref =50 Ω 

 
Figure 6.  Antenna driving point impedances for frequencies between  

80 and 116 GHz. Smith chart is normalized to 50 Ω. 

A superconducting tuning circuit has been developed and 
optimized using Sonnet [5] and ADS [6]. Figure 7 shows a 
picture of the tuning structure. The equivalent circuit is shown 
in Figure 8. 

 
Figure 7.  Tuning circuit of baseline design. 

The design employs three junctions of size 1.5×1.5 mm2 in 
series of which two are placed on an island structure. Although 
this adds a small series inductance to the junction array, the 
whole structure remains capacitive. This capacitance is 
compensated by a parallel inductance consisting of a coplanar 
waveguide followed by a capacitance providing the virtual 
ground to RF. Matching to the antenna impedance is achieved 
with a structure that can be viewed either as a CLCPW λ/4-
transformer or as a discrete L-C transformer. 
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Figure 8.  Equivalent circuit of the tuning structure. 

IRAM’s standard fabrication process for SIS junctions includes 
anodization for better isolation [4]. Since in this design two 
junctions are placed on an isolated island, they cannot be 
anodized and so the standard process cannot be used. In order 
to limit the risk of the development of a process without 
anodization, a second design based on the standard process has 
been made. In this design the array consists only of two 
junctions of size 1.2×1.2 mm2. The short to ground has been 
realized with a large area junction. The order of the different 
layers is inverted compared to the baseline design. A small line 
connects the large junction to mass, so that both junctions can 
be anodized. The characteristics of the two junction array in the 
backup design have been chosen to equal those of the three 
junctions array in the baseline design so that tuning and 
matching to the antenna impedance are almost the same for the 
two designs.      

The achieved matching to the junction is quite homogenous 
over the whole frequency range for both designs as can be seen 
by the junction’s embedding impedances plotted in the Smith 
chart in Figure 9. The red line in the Smith chart delimits the 
region of impedances for which we expect unconditionally 
stable behaviour. The power coupled to the junction lies above 
96% (see Figure 10). 
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Zref = Rrf

 
Figure 9.  Embedding impedances of the junctions for baseline (green) and 

backup (blue) design. The red line delimits the region of unconditionally stable 
behaviour. Smith chart is normalized to the junction's RF impedance. 

 
Figure 10.  Fraction of power coupled to the junctions for both designs. 

B. Noise measurements 
First wafers have been fabricated having a very low yield 

and bad homogeneity of chips of design 1. No chips of design 
2 could be fabricated so far. Figure 11 shows a photograph of 
the 3 junctions array of a design 1 mixer chip, which has been 
tested as DSB mixer. 

 
Figure 11. Photograph of the 3 junctions array of design 1. 

Although in the final design the junctions are directly 
mounted into the integrated coupler/mixer block without prior 
testing, mixer blocks have been fabricated to be able to validate 
the mixer design by DSB mixer tests. Figure 12 shows a mixer 
chip mounted in the DSB mixer block for testing. On the right-
hand side the IF output of the mixer is connected via bond 
wires to a 50Ω line. 

 
Figure 12. Photograph of mixer chip mounted in the DSB mixer block. 

An example of a DSB noise measurement for fLO = 100 GHz 
and an IF band of 4 to 12 GHz is shown in Figure 13. It can be 
seen that the three junctions in series behave like one single 
junction. 

 
Figure 13. Example of noise measurement for 

 fLO = 100 GHz and fIF = 4-12 GHz. 

Noise measurements have been carried out first for an IF 
band of 4 to 8 GHz. The result is shown in Figure 14 
represented by the blue curve. When changing the IF chain to 
4–12 GHz, the noise increases by ~6 K due to the higher noise 
of the HEMT amplifier [7] (green curve in Figure 14). Since 
these measurements have been made with a –17 dB LO coupler 
these results will improve by around 4.5 K when changing to 
the initially foreseen LO coupler with –23 dB coupling.   

 
Figure 14. DSB noise measurements integrated over 

 4 to 8 GHz and 4 to 12 GHz IF band. 

Noise temperatures as a function of the IF frequency are shown 
in Figure 15. Apart from the point at 4 GHz where the 
cryogenic isolator is not working correctly noise curves are flat 
over the IF band. 
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Figure 15.  Noise temperatures as a function of the IF frequency. 

IV. CONCLUSIONS 
A sideband separating mixer for the RF frequency range of 

80 to 116 GHz has been designed. First junctions have been 
characterized as DSB mixers for LO frequencies from 85 to 
115 GHz and an IF band of 4 to 12 GHz achieving integrated 
noise temperatures between 22 and 27 K. The DSB mixer 
design could thus be validated for signal frequencies between 
77 and 123 GHz. The design also covers the IF band of 4 to 12 
GHz as can be seen by the flat noise curves as function of IF 
frequency.   
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