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Abstract— We report on the development of SuperCam, a 64 

pixel, superheterodyne camera designed for operation in the 
astrophysically important 870 µm atmospheric window.  
SuperCam will be used to answer fundamental questions about the 
physics and chemistry of molecular clouds in the Galaxy and their 
direct relation to star and planet formation. The advent of such a 
system will provide an order of magnitude increase in mapping 
speed over what is now available and revolutionize how 
observational astronomy is performed in this important 
wavelength regime.  

SuperCam is constructed by stacking eight, 1x8 rows of 
tunerless, SIS mixers. The SIS junctions use SOI (Silicon on 
Insulator) technology, with beamleads for device positioning and 
IF and ground electrical connections.  The mixer modules are 
fabricated using a Kern MMP-2522 micromilling machine 
purchased specifically for this task. The IF output of each SIS 
device is directly connected to a low-noise, broadband MMIC 
amplifier module integrated into the mixer block. The 
instantaneous IF bandwidth of each pixel is 2 GHz, with a center 
frequency of 5 GHz. An IF processor constructed of eight 8-
channel modules provides IF amplification, total power 
monitoring and baseband downconversion. A spectrum of the 
central 250 MHz or 500 MHz of each IF band is provided by the 
Omnisys real-time FFT spectrometer system, based on Xilinx 
Virtex 4 FPGAs. This spectrometer can operate in either 32 
channel mode (500 MHz/channel) or 64 channel mode (250 
MHz/channel). Local oscillator power is provided by a Virginia 
Diodes solid-state multiplier chain whose output is divided 
between the pixels with a matrix of waveguide power dividers.  
The mixer array is cooled to 4K by a closed-cycle cryostat with 
two cryocoolers. SuperCam will reside at the Cassegrain focus of 
the 10m Heinrich Hertz telescope (HHT) with a dedicated re-
imaging optics system.  

All subsystems of SuperCam have completed the development 
stage, and are undergoing testing. We present test results for the 
SuperCam LNA modules, integration of LNAs in a test mixer, IF 
processor performance, spectrometer performance, cryogenic 
system verification, and end-to-end measurements of the IF chain 
and backend. Results from the fabrication, construction and 
testing of  prototype SOI mixers, in both single pixel and 8 pixel 
versions will be shown. We will enter the final fabrication stage in 
early 2007, with expected completion in late 2007. Science 
operations are expected to begin in Spring, 2008.  

 
Index Terms—Submillimeter heterodyne array 
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I. INTRODUCTION 
uperCam will operate in the astrophysically rich 870µm 
atmospheric window, where the HHT has the highest 

aperture efficiency of any submillimeter telescope in the world 
and excellent atmospheric transmission more than 40% of the 
time. The proposed Superheterodyne Camera (SuperCam) will 
be an 8x8, integrated receiver array fabricated using leading-
edge mixer, local oscillator, low-noise amplifier, cryogenic, 
and digital signal processing technologies. 

SuperCam will be several times larger than any existing 
spectroscopic imaging array at submillimeter wavelengths. The 
exceptional mapping speed that will result, combined with the 
efficiency and angular resolution achievable with the HHT, 
will make SuperCam the most uniquely-powerful instrument 
for probing the history of star formation in our Galaxy and the 
distant Universe. SuperCam will be used to answer 
fundamental questions about the physics and chemistry of 
molecular clouds in the Galaxy and their direct relation to star 
and planet formation. Through Galactic surveys, particularly in 
CO and its isotopomers, the impact of Galactic environment on 
these phenomena will be realized. These studies will serve as 
“finder charts” for future focused research (e.g. with ALMA) 
and markedly improve the interpretation, and enhance the 
value of numerous contemporary surveys.  

S

Figure 1: Life cycle of the ISM 
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II. SUPERCAM SCIENCE 
From the Milky Way to the highest-redshift protogalaxies 

at the onset of galaxy formation, the internal evolution of 
galaxies is defined by three principal ingredients that closely 
relate to their interstellar contents: 

 
• The transformation of neutral, molecular gas 

clouds into stars and star clusters (star 
formation). 

• the interaction of the interstellar medium (ISM) 
with the young stars that are born from it, a 
regulator of further star formation. 

• the return of enriched stellar material to the ISM 
by stellar death, eventually to form future 
generations of stars. Figure 2: The SuperCam cryostat and optics 

 
The evolution of (the stellar population of) galaxies is 

therefore determined to a large extent by the life cycles of 
interstellar clouds: their creation, starforming properties, and 
subsequent destruction by the nascent stars they spawn. The 
life cycle of interstellar clouds is summarized pictorially in 
Figure 1. Although these clouds are largely comprised of 
neutral hydrogen in both atomic and molecular form and 
atomic helium, these species are notoriously difficult to detect 
under typical interstellar conditions. Atomic hydrogen is 
detectable in cold clouds via the 21 cm spin-flip transition at 
1420 MHz, but because the emission line is insensitive to gas 
density, cold (T~70K) atomic clouds are not distinguishable 
from the warm (T~8000K) neutral medium that pervades the 
Galaxy. Furthermore, neither atomic helium nor molecular 
hydrogen (H2) have accessible emission line spectra in the 
prevailing physical conditions in cold interstellar clouds. Thus, 
it is generally necessary to probe the nature of the ISM via 
rarer trace elements. Carbon, for example, is found in ionized 
form (C+) in neutral HI clouds, eventually becoming atomic 
(C), then molecular as carbon monoxide (CO) in dark 
molecular clouds. The dominant ionization state(s) of carbon 
accompany each stage of a cloud's life in Figure 1. In general, 
however, only global properties can be gleaned from the coarse 
spatial resolution offered by studies of external galaxies. 
Therefore detailed interstellar studies of the widely varying 
conditions in our own Milky Way Galaxy serve as a crucial 
diagnostic template or “Rosetta Stone” that can be used to 
translate the global properties of distant galaxies into reliable 
estimators of star formation rate and state of the ISM.  

III. SUPERCAM INSTRUMENT DESCRIPTION 

A. Instrument Design 
Unlike all other millimeter/submillimeter arrays composed 

of individual mixers and discrete components, SuperCam has a 
high degree of integration. Well conceived, efficient packaging 
is essential to the successful implementation of large format 
systems. The enormous complexity of even a small discrete 
system suggests a more integrated approach for larger systems. 
At the heart of the array is an 8x8 integrated array of low-noise 
mixers. The array mixer contains first stage, low-noise, MMIC 

IF amplifier modules with integrated bias tees. A single solid-
state source provides local oscillator power to each array mixer 
via a waveguide corporate power divider and a simple silicon 
etalon. Below we discuss SuperCam's key components. 

 
1) Cryogenics 

Figure 3: 3D CAD model of an open mixer array module (top) and a 
completed tellurium copper mixer block with IF board installed 
(bottom). 

The SuperCam cryostat with attached LO optics is shown in 
Figure 2. The cryostat was constructed by Universal 
Cryogenics in Tucson, Arizona, USA. Light from the telescope 
enters the cryostat through a 127 mm diameter AR coated, 
crystalline quartz vacuum window and passes through an IR 
blocking filter on the 40 K radiation shield before illuminating 
the 4 K mixer array. SuperCam uses a Sumitomo SRDK-415D 
cryocooler. The cooler has 1.5 W of thermal capacity at 4.2 K 
and 45W at 40K with orientation-independent operation. The 
operating temperature of the cryocooler is stabilized by the 
addition of a helium gas pot on the 2nd stage. A CTI 
cryogenics CTI-350 coldhead supplements the cooling of the 
40K shield, and provides 12K heatsinking for the 64 stainless 
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steel semi-rigid IF cables. The addition of this second coldhead 
permits the use of moderate lengths of standard coaxial cable 
while maintaining low heat load at 4K. Measurements using 
resistive heaters positioned in the cryostat at the location of the 
IF amplifiers verify that the cryogenic system has adequate 
performance, with an expected load capacity margin of ~50%.  

2) Mixer Array 
We are developing a compact, sensitive, 64 pixel array of 

SIS mixers optimized for operation in the 320-360 GHz 
atmospheric window. The two dimensional, 8x8 array will be 
composed of eight, 1x8 subarrays. The array mixers utilize SIS 
devices fabricated on Silicon-On-Insulator (SOI) substrates, 
with beam lead supports and electrical contacts. The 
waveguide probe and SIS junction are based on an asymmetric 
probe design currently in use at the Caltech Submillimeter 
Observatory in their new facility 350 GHz receiver. The 
measured DSB noise temperature of this receiver (40 K) is 
excellent and essentially frequency independent across the 
band. The 1x8 mixer subarrays will be constructed from 
tellurium copper using the splitblock technique. Stainless steel 
guide pins and screws are used to ensure proper alignment and 
good contact between parts. Figure 3 shows a photograph of a 
prototype tellurium copper 1x8 mixer array fabricated at the 
University of Arizona using a Kern MMP micromilling 
machine. This block meets all design specifications, with 3 µm 
dimensional accuracy for all waveguide circuits. A diagonal 
feedhorn extension block is bolted to the front of the mixer 
array assembly, extending the diagonal horns to 11mm aperture 
size. This eliminates the need for dielectric lenses and their 
associated manufacturing and alignment difficulties. The 
energy in the horn passes through a 90° waveguide bend before 
reaching the device. The waveguide environment is designed 
around full height rectangular waveguide, with a fixed quarter 
wave backshort. The SIS device is suspended above the 
suspended stripline channel via eight small beamlead supports. 
Both the hot and ground beamleads are tack-bonded with a 
wirebonder to the MMIC module input pad and block, 
respectively. The mixer blocks are fabricated at the University 
of Arizona using a Kern MMP micromilling machine 
purchased for this project. This numerically controlled mill can 

fabricate structures to micron accuracy with a high level of 
automation. A SuperCam 1x8 module can be produced in ~8 
hours of machine run time, using only a single set of micro end 
mills per block half. The machine’s 24 position tool changer 
allows a complete block to be fabricated with minimal user 
intervention during the machining process. Integrated 
workpiece and tool metrology systems, along with 
sophisticated computer aided manufacturing (CAM) software 
result in high part yield. Verification of fabricated parts though 
a high precision measurement microscope and 3D 
interferometric microscope insure dimensional accuracy and 
waveguide surface finish are within design tolerances. 

 
3) Local Oscillator 

Figure 4: SuperCam 8-way LO power divider. The divider is 
based on a corporate array of E-plane y-splitters. 

With an array receiver, LO power must be efficiently 
distributed among pixels. Depending on the mechanical and 
optical constraints of the array, a balanced distribution can be 
achieved using quasioptical techniques or waveguide injection. 
With the quasioptical approach, dielectric beam splitters or 
holographic phase gratings are used to divide the LO energy 
between array pixels. The quasioptical approach works well for 
modest sized arrays. However, for the large format system 
being proposed here, the size of the required quasi-optical 

Figure 5: A SuperCam MMIC amplifier module, and typical measured results at 13K bath temperature for several bias points. Amplifier 
noise remains low for bias powers as low as 8 mW. Gain remains above 30 dB. 
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power splitter and diplexer become prohibitive. Therefore we 
have chosen to use a hybrid waveguide/quasioptical LO power 
injection scheme. The LO power for the array will be provided 
by a single solid-state, synthesizer-driven source available from 
Virginia Diode Inc. The active multiplier chain consists of a 
high power solid-state amplifier followed by a series of 
tunerless broadband multipliers. The output of the multiplier is 
coupled to an eight-way waveguide corporate power divider 
with splitblock machineable waveguide twists. Each of the 
eight outputs provides the drive power for a 1x8 subarray via 
an identical 8 way corporate divider with diagonal waveguide 
feedhorn outputs. Figure 4 shows a prototype 1x8 power 
divider designed to power a single 1x8 mixer row. The final 64 
way power divider will consist of 9 copies of this circuit, with 
a different block footprint. An extended diagonal horn array 
similar to the mixer horn extension blocks then matches the LO 
beams to the mixers through a Gaussian beam telescope 
comprised of two large dielectric lenses. A silicon etalon 
diplexer is used to inject the LO power. This diplexer consists 
of a precisely polished silicon plate which acts as a fixed tuned 
Fabry-Perot etalon. This technique can couple 70% of the 
available LO power and over 99% of the sky power into the 
mixers, with no moving parts and simple optical alignment. As 
SuperCam is designed to spend extended periods of time tuned 
to a single frequency, this simple technique is preferred over 
more complicated tunable diplexers. A set of diplexers will 
allow tuning to any line of interest by switching silicon plates. 
This scheme ensures uniform LO power in each beam since the 
waveguide path lengths are identical for each beam.  In 
addition, the waveguide feedhorns provide well controlled and 
predictable LO power distribution and coupling to each mixer. 
Accounting for conduction and surface roughness losses, we 
expect this 64-way network to add an additional 2dB of LO 
power loss compared to a lossless divider. 

 
4) IF/Bias Distribution System 

The IF outputs from the SIS devices are bonded directly to 
the input matching networks of low-noise, InP MMIC 
amplifier modules located in the array mixers. These amplifier 
modules have been designed and fabricated by Sander 
Weinreb's group at Caltech. The IF center frequency of the 
array is 5 GHz. The MMIC chip is contained in an 11mm x 
11mm amplifier module that contains integrated bias tees for 
the SIS device and the amplifier chip. The module achieves 
noise temperature of ~5 K consuming 8 mW of power at 4K. 
The first 10 amplifier modules are complete., with all 

components necessary to complete all the modules finished. An 
example is shown in figure 5, with measured gain and noise 
data at 8 mW power dissipation. We have integrated an 
amplifier module into a single pixel SIS mixer and have 
verified that the amplifier module operates as expected. Allan 
varience times and mixer noise temperatures are unchanged 
within the measurement errors compared to a similar mixer 
used with an external commercial LNA and isolator. Similar 
tests have been performed with a single pixel mixer with 
beamlead devices, which will be described in section IV.  

In addition to the LNA modules, the Caltech group has 
designed and constructed a warm IF system for SuperCam that 
will condition the IF signal for use with the SuperCam Array 
Spectrometer (figure 6). This IF system consists of a single 
large microwave printed circuit board with 8 channels of signal 
conditioning mounted in a modular chassis. The module 
contains a 5 GHz gain stage, switchable filters for both 250 
MHz and 500 MHz bandwidth modes, baseband 
downconversion and baseband amplification. These modules 
have been extensively tested for stability and noise 
performance. Their stability is sufficient to avoid increasing the 
allen time of the array spectrometer, while adding less than 1K 
to the receiver noise temperature. 

 
5) Array Spectrometer 

The SuperCam spectrometer will deliver 64 channels at 250 
MHz/channel with 250 kHz resolution, or 32 channels at 500 
MHz with 250 kHz resolution. The system will be capable of 
resolving lines in the coldest clouds, while fully encompassing 
the Galactic rotation curve. The system is easily extendible to 
deliver 64 500 MHz bandwidth channels or 32 1 GHz 
bandwidth channels. This leap in spectrometer ability is driven 

Figure 6: SuperCam IF processor  system for two SuperCam 
rows (16 channels).

Figure 7: SuperCam FFT spectrometer board from Omnisys AB. 
This 3U board can process 4 500 MHz  bandwidth IF signals or 2 
1 GHz bandwidth IF signals at 250 kHz resolution. 
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by the rapid expansion in the capabilities of high speed Analog 
to Digital Converters (ADCs) and Field Programmable Gate 
Arrays (FPGAs). The SuperCam spectrometer, built by 
Omnisys AB of Sweden, is based on a real-time FFT 
architecture. High speed ADCs digitize the incoming RF signal 
at greater than 10 bits resolution, preventing any significant 
data loss as with autocorrelation based schemes. Then,  a large, 
high speed FPGA performs a real time FFT on the digitized 
signal and integrates the resulting spectrum. In our board 
architecture, 4 ADCs feed a single Xilinx Virtex 4 FPGA on 
each spectrometer board (shown in figure 7). This single board 
can process 4 500 MHz IF bandwidth signals or two 1 GHz IF 
bandwidth signals at 250 kHz resolution. Only recently has 
Xilinx released FPGAs fast enough and large enough to 
accommodate the firmware capable of this task. These systems 
are fully reconfigurable by loading new firmware into the 
FPGAs. In addition, the spectrometer can be easily expanded  
to increase bandwidth. We have received 8 boards capable of 
processing 64x250 MHz, 32x 500 MHz or 16x1GHz IF 
signals. In the 64x250 MHz mode, we power combine two IF 
signals into one spectrometer input. Stability testing shows the 
spectrometer is capable of delivering a spectroscopic Allan 
time in excess of 600s.  

 of Sweden, is based on a real-time FFT 
architecture. High speed ADCs digitize the incoming RF signal 
at greater than 10 bits resolution, preventing any significant 
data loss as with autocorrelation based schemes. Then,  a large, 
high speed FPGA performs a real time FFT on the digitized 
signal and integrates the resulting spectrum. In our board 
architecture, 4 ADCs feed a single Xilinx Virtex 4 FPGA on 
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can process 4 500 MHz IF bandwidth signals or two 1 GHz IF 
bandwidth signals at 250 kHz resolution. Only recently has 
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6) Optics 6) Optics 
The existing secondary mirror of the Heinrich Hertz 

Telescope provides a f/13.8 beam at the Nasmyth focus. The 
clear aperture available through the elevation bearing prevents 
the possibility of a large format array at this position. To 
efficiently illuminate a large format array like SuperCam, the 
telescope focus must fall within the apex room located just 
behind the primary. A system of re-imaging optics transforms 
the f number of the telescope to f/5. Since the physical 
separation between array elements in the instrument focal plane 
scales as 2fλ, lower f/#'s serve to reduce the overall size of the 

instrument. The reimaging optics are composed of a hyperbola 
and an ellipse with  two flat mirrors. All the reimaging optics 
can be mounted on a single optical breadboard and left in the 
apex room. The cryostat and optics frame have been designed 
using finite element analysis to minimize gravitational 
deflection, and the calculated deflections have been fed into the 
tolerancing of the optical design. The optical system was 
initially designed and optimized with Zemax, and was then 
verified by BRO research using their ASAP physical optics 
package. The system’s efficiency exceeds 80% for all pixels, 
and has been verified to be robust to alignment and fabrication 
tolerances.  

The existing secondary mirror of the Heinrich Hertz 
Telescope provides a f/13.8 beam at the Nasmyth focus. The 
clear aperture available through the elevation bearing prevents 
the possibility of a large format array at this position. To 
efficiently illuminate a large format array like SuperCam, the 
telescope focus must fall within the apex room located just 
behind the primary. A system of re-imaging optics transforms 
the f number of the telescope to f/5. Since the physical 
separation between array elements in the instrument focal plane 
scales as 2fλ, lower f/#'s serve to reduce the overall size of the 

instrument. The reimaging optics are composed of a hyperbola 
and an ellipse with  two flat mirrors. All the reimaging optics 
can be mounted on a single optical breadboard and left in the 
apex room. The cryostat and optics frame have been designed 
using finite element analysis to minimize gravitational 
deflection, and the calculated deflections have been fed into the 
tolerancing of the optical design. The optical system was 
initially designed and optimized with Zemax, and was then 
verified by BRO research using their ASAP physical optics 
package. The system’s efficiency exceeds 80% for all pixels, 
and has been verified to be robust to alignment and fabrication 
tolerances.  

  

IV. LABORATORY TESTING IV. LABORATORY TESTING 
For testing the SuperCam mixer design in the laboratory, we 

have designed two single pixel mixers. The first design uses an 
existing SIS junction design from the DesertStar 7-pixel array 
[7], but incorporates the Caltech designed MMIC module. This 
work has been reported in other papers [12,13]. We determined 
that the SIS receiver with integrated MMIC amplifier worked 
as well as a receiver with a separate connectorized amplifier 
and cryogenic amplifier, and resulted in no heating effects at 
the SIS device from the close proximity of the amplifier. We 
later designed a second single pixel amplifier (shown in figure 
8) that is an exact copy of a single pixel of the 1x8 mixer array 
design discussed in section III.2. This mixer was designed to 
test the self-aligning beam-lead-on-SOI SIS devices that will 
be used in the SuperCam array, as well as the compact, low 
power electromagnet, MMIC amplifier module and extended 
diagonal feedhorn.  The first batch of SIS junctions suffered 
from curling caused by a stressy oxide layer which made them 
difficult to mount, but successful testing was still possible. Lab 
results from the first device mounted are also shown in figure 
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Figure 8: Single pixel test mixer with extended diagonal horn, LNA module and IF board (top left), a closeup of the device waveguide environment 
(bottom left), and a representative IV curve and hot/cold total power curve (right). 
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8. We achieved an uncorrected DSB noise temperature of 75K, 
and verified efficient operation of the electromagnet. Since 
these tests, a second batch of SIS devices has been delivered 
with the curling problem eliminated. This will facilitate rapid, 
self aligned mounting if the devices. With further optimization, 
we expect to be able to achieve the 60K receiver noise 
temperature predicted by the SIS device simulations.  

 
In addition to measurement of these test mixers, we have 

also conducted an end to end test using prototype components 
of the complete SuperCam system. In this test, we used a line 
injector to detect a simulated spectral line using a single pixel 
test mixer with MMIC LNA module, a prototype IF processor 
module and an Omnisys FFT spectrometer board. The 
spectrum produced via this measurement is shown in figure 9.  
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Gensheimer, P., Hedden, A., Bussmann, S., Weinreb, S., Kuiper, T., 
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Figure 9: Spectrum from an end to end test of SuperCam 
prototype hardware.

[14] Puetz, P., Hedden, A., Gensheimer, P., Golish, D., Groppi, C., Kulesa, K., 
Narayanan, G., Lichtenberger, A., Kooi, J., Wadefalk, N., Weinreb, S., 
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Int. J. Infrared Milli. Waves, 27, 1365, 2006. 

 

V. CONCLUSION 
We are constructing SuperCam, a 64-pixel heterodyne 

imaging spectrometer for the 870 µm atmospheric window. A 
key project for this instrument is a fully sampled Galactic plane 
survey covering over 500 square degrees of the Galactic plane 
and molecular cloud complexes. This 12CO(3-2) and 13CO(3-2) 
survey has the spatial (23”) and spectral (0.25 km/s) resolution 
to disentangle the complex spatial and velocity structure of the 
Galaxy along each line of sight. SuperCam was designed to 
complete this survey in two observing seasons at the Heinrich 
Hertz Telescope, a project that would take a typical single pixel 
receiver system 6 years of continuous observing to complete. 
Prototypes of all major components have been completed and 
tested. The first 1x8 mixer row has been fabricated, and is now 
undergoing testing. We expect to complete fabrication and 
testing of the focal plane in 2007, with operations on the 
telescope to begin in 2008.  
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