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Abstract— At the ISSTT2006, we presented experimental 

results for a new microwave (~ 1GHz) direct and heterodyne 
detector  based on metallic Single-Walled Carbon Nanotubes (m-
SWNTs). We now report on microwave detection in several 
different contact configurations, and the methods used to 
fabricate these. One such configuration is a log-periodic toothed 
terahertz antenna with which we have now (soon after the 
conference) detected terahertz radiation from laser sources up to 
1.63 THz. We also report on ab-initio simulations relevant for 
interpreting the experimental data. We argue that exploring the 
properties of single m-SWNTs at terahertz should be very 
fruitful.  

I. INTRODUCTION 

 
ingle Wall Carbon Nanotubes (SWNTs) have been 
proposed for use of in many new types of electronic 
devices [1]. SWNTs can be either metallic or 

semiconducting [2]. One device that is being researched is the 
Carbon Nanotube Field Effect Transistor (CNT-FET) [3], [4] 
which employs semiconducting CNTs (s-SWNTs). 
Applications have also been proposed to detectors for 
microwave or terahertz frequencies. Schottky barriers exist at 
the contacts of semiconducting SWNTs [5], [6], and were 
fabricated and analyzed for use as terahertz detectors by 
Manohara et al. [7]. Experimental results were recently 
published by Rosenblatt et al. [8] demonstrating detection of 
microwaves up to 50 GHz, as well as by Pesetski et al. [9] 
who measured heterodyne detection with flat frequency-
dependence up to 23 GHz. These references ([7]-[9]) all used 
the s-SWNT-FET configuration. Itkis et al. published results  
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on a Near IR bolometric detector employing a CNT film in 
which it is likely that the metallic CNTs were most active. A 
similar bolometric CNT film detector was demonstrated at 94 
GHz by Tarasov et al. [11]. Metallic SWNTs (m-SWNTs) 
have considerable potential for detector applications, and one 
of us (SY) recently proposed a very fast terahertz detector 
based on the hot electron bolometric (HEB) effect [12,13]. In 
the present paper we report experimental results for a device 
that uses an m-SWNT for detecting microwaves up to 12 
GHz, as well as terahertz radiation up to 1.6 THz. In its 
microwave operation the device described here functions both 
as a direct (DC output) detector and as a heterodyne detector 
(difference frequency output up to at least 200 MHz). In this 
paper we will discuss the experimental results, the possible 
detection mechanisms involved, as well as relevant ab-initio 
simulations.   

II. EXPERIMENTAL METHODS AND RESULTS 

A. Initial Experimental Procedures  
SWNTs used in our study were  grown using laser ablation 

[14]. They have diameters between 0.6 nm and 1.5 nm, and 
were contacted either at the IBM T.J. Watson Research 
Center, or at UMass/Amherst. In the IBM process they were 
spun from solution onto a  p+-doped silicon substrate covered 
with 100 nm of silicon oxide. Contact strips of width 350 nm 
were made with 20 nm of Ti followed by 100 nm of Au, and 
were connected to 80 μm x 80 μm contact pads. The length of 
the tubes between contacts is known to be in the range of 300 
nm to 500 nm.  

In the UMass process, CNTs were also first spun onto 
doped silicon substrates. We used an available mask that 
produced long metal contact strips with different  spacings 
from 4 to 8 μm and contact pads  that could be wire-bonded.  

In all subsequent microwave experiments the chip was 
placed in a small copper enclosure (with a metallic cover) to 
isolate it from external radiation, see Figure 1 for an example. 
The contact pads were connected by wire bonds to (1) a 
microstrip transmission line that was in turn connected  to a 
standard coaxial connector installed in the side of the 
enclosure; and (2) the ground plane of the enclosure. The 
silicon substrate was left electrically insulated in order to 
minimize parasitic reactances. The assembly was placed in a 
liquid helium vacuum dewar and pumped to a good vacuum 
for at least one day in order to remove most of the surface 
contaminations on the CNT. A well shielded stainless steel 
coaxial cable makes the sample accessible from the outside of 
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the dewar. We used a programmable DC power supply 
(Keithley) to provide a voltage source bias to the device 
through the coaxial cable. The DC supply measured the DC 
voltage and current, and these were read by a computer for 
further processing.  Microwave sources (Agilent) were also 
fed to the coaxial cable, and different sources (DC and 
microwave) were separated through the use of commercial 
bias tees.  

B. I-V-Curves and Microwave Detection 
It is well-known that Ti/Au contacts yield a contact 

resistance that is usually quite high and strongly dependent on 
the nanotube diameter [15]-[17]. The devices used in our 
study had contact resistances that were in the range of a few 
hundred kΩ to a few MΩ. It is also known that the 
conductance of such  

 

 
Figure 1. The experimental fixture used in this work. 

 
CNTs shows a “zero-bias anomaly” [17-19], i.e. the 
differential conductance (dI/dV) plotted as a function of bias 
voltage (V) shows a dip at low values of V with a width of 
about +/- 400 mV. This presents a nonlinearity in the IV-curve 
(Figure 2; for an IBM device) that we exploited for 
microwave detection.  

The zero-bias anomaly “dip” is also evident from the 
additional plot of dI/dV in Figure 2. This dip deepens as the 
temperature is decreased (the curves shown in Figure 2 were 
taken at 77K). At larger voltages the IV-curve shows a linear 
dependence between current and bias with a slight decrease in 
dI/dV for the highest voltage range. Except for the zero-bias 
anomaly, the IV-curve can thus be assumed to be due to a 
(roughly) constant contact resistance, that is weakly dependent 
on the temperature. Evidence from other metallic CNTs [4]  
indicates that the electrons have mean free paths of about 
1μm; thus in our shortest tubes they travel ballistically from 
contact to contact. The zero-bias anomaly is usually ascribed 
to the very strong electron-electron Coulomb interactions in 
one-dimensional conductors that necessitates treating the 
electrons as a collective, plasmon-like, medium known as a 
“Luttinger liquid” (“LL”) [17]. Tunneling from the contacts 
into the LL is suppressed at low temperatures, which explains 
why the conductance approaches zero. It has been suggested 
that the behavior of the conductance in the entire temperature 
range from 4 K to 300 K can be better explained as being due 
to a combination of effects, the LL effect, and that of 

interfacial barriers at the contacts [18]. The LL effect is 
expected to be important only in the lowest temperature range. 

 
Figure 2.  Measured IV-curve for a SWNT from IBM at 77 K (right 

scale);  dI/dV  based on the IV-curve (left  scale). 
 

As made clear in the paper mentioned above [18], a complete 
understanding of the contacts between the one-dimensional m-
SWNTs and a 3-D metal is not yet available.  

UMass devices with Ti/Au contacts were also fabricated 
with IV-curves similar to that in Figure 2. In a different 
process, we placed CNTs on top of Ti/Au contacts, and then 
added a further Pd contact metalization on top of the CNTs. 
This resulted in a much lower contact resistance, and an IV 
curve that was curved in the opposite direction, see Figure 3. 
The increased resistance at higher bias voltages is known to be 
due to optical phonon emission that requires a minimum 
electron energy of about 160 meV [4,19,20]. 

 

 
 
Figure 3. IV curve 77K (red) for CNT contacted with low resistance Pd 

contacts at UMass. The detected current change (ΔI) (green) is compared with 
d2I/dV2 (blue).  

As microwaves were applied to the SWNT at 77K, we 
recorded a change in the device DC current (ΔI), and plotted 
this versus DC bias voltage (Figure 3). Similar recordings 
were also obtained for the IBM tubes, as reported earlier 
[21,22]. This recording was done by measuring the voltage 
across a series resistance with a lock-in amplifier, while 
square wave modulating the microwave source. The DC 
power supply was still configured as a voltage source. As 
shown in Figure 3, the detected current change varies with the 
bias voltage in the same way as d2I/dV2, the second-order 
derivative of the IV-curve. We can then interpret the detection 
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process as a standard microwave detection process [23]. 
Theory and experiment agree quantitatively within 3dB. 
Heterodyne detection was demonstrated [21,22], and the 
microwave reflection coefficient (S11) was measured with an 
automatic network analyzer, as also reported in [21,22]. The 
detector response is flat to 900 MHz, and then falls off with 
the microwave frequency at about 12 dB per octave, 
consistent with a microwave model that was derived based on 
the S11 measurements. The modeling makes clear that the 
main factor that limits the frequency response is the very high 
doping of the silicon substrate used in all early measurements, 
as well as the large capacitance from the contact pads to the 
doped substrate.   

C. Recent Experimental Procedures. 
In order to explore the new detection process at higher 

frequencies we next fabricated devices on substrates that are 
insulating: sapphire and silicon-on-sapphire (SOS). Both of 
these substrates show good transmission up to high terahertz 
frequencies. New lithography masks were also designed and 
fabricated, with new contact configurations, see Figure 4: (1) 
Coplanar waveguides (CPW); and (2) Log-periodic toothed 
antennas, similar to designs we have previously used with 
NbN HEB mixers. The intention was to place CNTs across the 
narrow gaps at the center of these structures. The CPW mask 
has two parts, one for the center conductor and one for the 
outer conductors. These two parts of the mask can be adjusted 
in the lithography process resulting in different gap widths. 
The log periodic antenna has a gap of about 6 μm.  

 

             
    (a)            (b) 
Figure 4. Contact patterns for the new masks: (a) Coplanar waveguide; (b) 

Log-periodic antenna.  
Each mask contains a large number of patterns of the types 

shown in Figure 4 (a) and (b) to maximize the probability of 
obtaining a CNT across the small gaps as they are spun on the 
substrates. The yield of tubes with acceptable IV-curves was 
found to be lower than when using contacts consisting of long, 
narrow strips, but several contacted tubes were found. The 
method of spinning the tubes onto the contacts in  this case 
proved to result in unreliable contact performance, and few 
detection measurements were performed. The one shown in 
Figure 3 represents an exception, but in this case the contacts 
were improved by evaporating Pd on top of the CNTs.  

Recently we have developed a much improved method for 
placing CNTs across the contacts, namely dielectrophoresis 
(DEP) [24-27]. In this method, an RF voltage (typically 5-10 
V RMS, 5 MHz) is applied across a pair of electrodes, after a 
drop of a solution containing the CNTs is placed over the 
contacts. In our case, the CNTs were suspended in Isopropyl 

alcohol [25] and then ultra-sonicated for 10 minutes. The 
result of the DEP is that CNTs migrate in the solution toward 
the contacts, and then become attached to the contacts. It has 
also been observed that nearby contacts that experience a 
floating RF potential can attract CNTs [26]. The procedure 
typically takes only a few minutes. The DC resistance is being 
monitored as the DEP proceeds and the process is stopped 
when a desired IV-curve has been obtained. If a somewhat 
longer time is used a large number of CNTs will be collected 
on the contacts, with a typical minimum resistance of 500 Ω. 
In this case it is possible to gradually burn CNTs by using a 
higher voltage (DC or pulsed). We have implemented the DEP 
procedure for both contact patterns in Figure 4. One 
advantage is that the substrate need not contain many patterns, 
one is sufficient. Another advantage is that when the applied 
voltage has a frequency of 5 MHz or above metallic SWNTs 
are preferentially selected [24]. We assume that if a few s-
SWNTs are also contacted in parallel with the m-SWNTs, 
their resistance is high enough that it can be neglected (no 
gate voltage is applied).  

 
D. Recent Experimental Results – Microwave and Terahertz 

Detection 
We have measured microwave detection in m-SWNTs 

placed by DEP and find similar results to the previous 
microwave experiments. One difference is that the detection 
persisted to higher frequencies, about 12 GHz. This was 
expected since we are now able to employ non-conducting 
substrates (sapphire and SOS) as mentioned above. A 
photograph of the fixture we use for the measurements is 
shown in Figure 5. This fixture was adapted from one 
previously used for NbN HEB mixers. The device chip in this 
case is SOS with dimensions 6 x 6 mm. Bond wires (3-4 mm 
long) are used to connect between a microstrip transmission 
line and the contact pads of the antenna. The bond wires have 
enough inductance to explain fall-off of the frequency 
response for microwave detection. The CPW structure has 
been tested in a microwave probe system, and this will be 
used to further extend the frequency response at microwave 
frequencies.  

 
 
Figure 5. The fixture used for recent measurements of MW and terahertz 

detection in m-SWNTs. The device is biased through the SMA connector. The 
silicon lens located on the opposite side of the SOS substrate can be seen 
through this substrate. 
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A 4 mm diameter ellipsoidal silicon lens was attached with 
purified bees wax to the substrate for quasi-optical coupling to 
the antenna as discussed in [12,13]. Note that the dielectric 
constant of sapphire is a close match to that of silicon. The 
device was biased through a 100 kΩ sensing resistor that 
configured the Keithley supply as a voltage source. A lock-in 
amplifier was connected across that resistor in a balanced 
mode through two further 100 kΩ resistors in order to record 
the detected change in current through the device. The same 
fixture can then be used for both microwave and terahertz 
detection. Terahertz radiation was introduced through the 
silicon lens from a terahertz gas laser that has a typical output 
power of 2-5 mW. The laser was modulated at 1 kHz by 
inserting an acousto-optic modulator after the CO2 pump laser. 
The modulator also provided the reference voltage for the 
lock-in amplifier. 

Using this configuration we have now for the first time 
(soon after the conference) demonstrated detection at terahertz 
frequencies in a CNT. Three different frequencies were used 
(wavelength in μm is given in parenthesis): 0.694 THz (432); 
1.04 THz (287); 1.63 THz (184); the IV-curve at 77 K is first 
displayed below in Figure 6. 

 

 
 
Figure 6. IV-curve for a device placed with DEP on the substrate shown in 

Figure 5.  
The detected voltage on the lock-in amplifier is plotted 

versus the bias voltage in Figure 7 when the 432 μm line was 
used as input. The input power was 2.3 mW, measured on a 
Scientech power meter. The noise level was of the order of 4-
5 μV, except for the highest bias voltages (near 1.5 V) where 
an increase in the 1/f noise from the CNT was evident. The 
S/N at the optimum bias point thus is about 25. These are 
preliminary data, but clearly show that the m-SWNT detects 
the terahertz radiation both at 300 K and at 77 K. Re-
alignment of the laser produced slightly different 
responsivities, but all features were reproducible. 

The highest frequency for which we obtained detection was 
1.63 THz (184 μm), see Figure 8. We also attempted detection 
at 2.54 THz (118 μm) but were not successful so far. Two 
different (perpendicular) polarizations were employed, and it 
is not yet clear what the significance of the different responses 
for different polarizations is.  

The bias voltage dependence of the detector response to 
terahertz radiation does not have a simple  d2I/dV2 

dependence, as it did for microwave detection (see Figure 3). 
We discuss different processes that may be responsible for the 
detection in section III. Much further work is clearly needed 
to identify the detection process(es) that actually occur(s). It is 
also noteworthy that the terahertz responsivity of the detector 
at this stage of the investigation is about the same at 300 K (~ 
1.2 V/W) as it is at 77 K (2 V/W). The responsivities are 
uncorrected for the optical losses in the dewar window and the 
silicon lens (~3-4 dB). The same device has a microwave 
responsivity of 73 V/W at 300 K, a typical value for 
microwave responsivity.  The largest microwave responsivity 
measured is 600 V/W, at 77 K, for the device with the IV-
curve as given in Figure 3. Future work will also explore use 
of lower temperatures than 77 K, for which we earlier found a 
much larger responsivity at microwaves [12,13].  

 

 
Figure 7. Detected voltage on the lock-in amplifier when the laser line at 

432 μm was used.  
 

 
Figure 8. Detected voltage on the lock-in amplifier with an input frequency 

of 1.63 THz.  

III. PREDICTED TERAHERTZ RESPONSE FOR M-SWNTS 
A single m-SWNT can be modeled as shown below in 

Figure 9, based on the work of P.Burke and others [28]. The 
contents of the “cell” are meant to be repeated periodically. 
The periodically repeated cells model a transmission line with 
a propagation velocity of about 2.4 x 108 cm/s. The physical 
process this models is the plasmon mode we discussed in Sec. 
II.B. Based on this model one finds that the m-SWNT has a 
very large kinetic inductance (LK), as well as a quantum 
capacitance (CQ). The kinetic inductance of a single m-SWNT 
was recently measured with microwave network analyzer 
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techniques, confirming a major aspect of the above model 
[29]. 

 
 

Figure 9. Circuit model for an m-SWNT. 
 

The contact resistance (RC) is typically large as also 
discussed in Sec. II.B, and often represents most of the 
measured DC resistance. RC has a capacitance in parallel (CC), 
however, and if CC is large enough then RC will be shunted 
and have a negligible effect at terahertz frequencies. We can 
then distinguish two types of cases: 

 
CASE A (CNT nonlinearity): If the contact impedance is 

small, we see mainly the m-SWNT proper, and a reasonable 
fraction of the terahertz power will be absorbed in the tube, 
provided that its ohmic resistance is not too high.  

 
CASE B (contact nonlinearity): In this case the contact 

resistance dominates the total impedance, as clearly occurs at 
microwave frequencies. 

 
 We have simulated the circuit in Figure 9 for CASE A and 

find the result shown  in Figure 10. The m-SWNT was 
assumed to be 1 μm long and the plasmon wave shows a half-
wave resonance at 1.2 THz. There is a second resonance at a 
much lower frequency due to a lumped circuit combination of 
the kinetic inductance and the contact capacitance.  

 
Figure 10.  Simulated S11 response of a 1 μm long m-SWNT fed from a 

100 Ω source (the LP antenna). Values assumed for the circuit in Figure 9 are 
RC/2 = 20 kΩ, CC = 10 fF, LK = 4 nH [28], CE = 50 aF [28] and 4CQ = 400 aF 

[28].  
 

The CNT can be well matched to the antenna for the lower 
values of CNT resistance, which are expected to occur at 
lower temperatures. At room temperature the matching can be 
improved by designing a matching network, as shown in [13].  

We have also simulated CASE B, and shown that excellent 
matching can be obtained at the lower terahertz frequencies. 
We can thus conclude that it is possible to efficiently absorb 
terahertz radiation in an m-SWNT. In CASE A we expect that 
the detection may occur due to HEB effects, as discussed 
earlier [11,12,21,22]. The responsivity will depend on the 
temperature dependence of the resistance, which can be quite 
substantial at the lower temperatures. CASE B has already 
been demonstrated at microwave frequencies, and further 
work will show to how high frequencies this process will be 
effective.  

IV. AB INITIO SIMULATION OF METALLIC CARBON NANOTUBES 
   We have mentioned above that our theoretical 

understanding of m-SWNT properties such as contact 
resistance and capacitance, as well as transport properties, is 
quite limited at the present time. Reliable and accurate 
quantum simulations of CNTs are needed to clear up our 
understanding of many experimental issues and characterize 
our devices. These are being performed by the group of 
Professor Eric Polizzi.   

In [30], we have achieved electron transport simulations of 
CNT-FETs based on Non-Equilibrium Green’s Functions 
(NEGF). The results obtained have highlighted the huge 
influence of 3D electrostatics on the 1D CNT and the role of 
defects (vacancies and charged impurities) in altering 
nanotube transistor device characteristics from the ballistic 
transport limit.  
  In order to allow an accurate physical description of the 
contacts with the reservoirs, one needs to resort to ab-initio 
atomistic approaches such as density functional theory (DFT). 
For numerical reasons, ab-initio transport calculations are 
usually limited to isolated regions of the carbon nanotube 
close to the metal contacts or possible defects. An ab-initio 
atomistic description of the electron transport in the entire 
carbon nanotube, however, could provide important insights 
on electronic properties of the device while considering 
arbitrary length, chirality, diameters, etc. . . This type of 
“bottom-up” simulation is still a formidable task and we are 
making use of innovative numerical modeling strategies to 
realize this goal efficiently. 
  For ab-initio type calculations, as compared to other 
traditional methods, mesh techniques (such as the finite 
element method- FEM) present significant advantages which 
have been reviewed in [31]. For a 100 nm long CNT 
composed of ~10,000 atoms, one may typically obtain a 
Hamiltonian matrix size of  108. Within our real-space mesh 
framework, we have, however, been able to reduce the 
computational cost of the transport simulations by introducing 
novel strategies such as: sub-band decompositions, and 
preconditioning strategies for solving the resulting linear 
systems via iterative methods. We have then recently applied 
these techniques for ab-initio electronic structure calculations 
for a CNT. Our preliminary results are summarized in Figure 
11. We also performed the calculation of the electron density. 
     In the future we plan to increase the level of sophistication 
of our model by introducing the following aspects: 
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