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Abstract—The growth rate of ultra-thin AlNx films during low 

energy plasma nitridation has been studied by measuring the 
normal state resistance-area product (RNA) of Nb/Al–AlNx/Nb 
Superconductor-Insulator-Superconductor junctions. The 
barriers were formed by nitridizing the surface of Al films with an 
rf plasma discharge of N2 gas diluted to 10% with He. The 
reaction was started smoothly by adopting a “two-step-ignition” 
technique. Junctions with RNA = 100–106 Ω⋅μm2 were fabricated 
by this process. A power law relationship between RNA and 
nitridation time was found to hold across the whole range of the 
measured RNA values. This implies that the physical thickness of 
the AlNx layer obeys a logarithmic growth law. 
 

Index Terms—Submillimeter wave mixers, Superconducting 
device fabrication, Superconductor-insulator-superconductor 
devices 

I. INTRODUCTION 
ltra-thin films of aluminum nitride (AlNx) have been 
proved to serve as excellent tunnel barriers for 

Superconductor-Insulator-Superconductor (SIS) junctions 
with normal state resistance-area products (RNA) less than 10 
Ω⋅μm2 [1, 2]. Such low-RNA SIS junctions are essencial in the 
development of broadband and high-sensitivity SIS mixers 
for astronomical observations in the submillimeter-terahertz 
range. While classical aluminum oxide (AlOx) barrier SIS 
junctions begin to suffer from large leakage current below 
RNA = 20 Ω⋅μm2, AlNx barrier SIS junctions can have RNA < 
1 Ω⋅μm2 with still decent quality, e.g.,  Rsg/RN > 10 [1]. This 
can be understood as a result of the lower barrier height of 
AlNx barriers compared to AlOx barriers (φAlNx < 0.9 eV [3], 
φAlOx < 2 eV [4]). 

While there have been a number of studies reporting 
successful fabrication of high quality AlNx barriers with low 
RNA by rf plasma nitridation [1, 5–11], controlling the RNA is 
a problem. This is because the nitridation of aluminum 
requires a plasma process which involves many free 
parameters, such as nitridation time, substrate temperature, rf 
power, dc voltage, N2 pressure and flow rate, etc. The 
dependence of the RNA product on these parameters has been 
studied by several authors [7–10, 12]. Among these parameters, 
the reported nitridation-time dependence of RNA differs from 
one study to another. While pioneering studies applied linear 

fits to their data (RNA � tN) [5, 6], subsequent studies have 
reported exponential relations (RNA � ektN) [13, 14], or peculiar 
relations involving plateaus [8, 9]. Meanwhile, no theory has 
been established which predicts the growth rate of the thickness 
of the AlNx layer during low energy plasma nitridation. Thus 
the relation between the RNA and nitridation time has been 
elucidated neither experimentally nor theoretically, and 
therefore the search for the appropriate process parameters 
involves a considerable amount of trial and error. 
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In this work, we fabricated many Nb/Al–AlNx/Nb SIS 
junctions using a composite plasma of N2 and He. By 

comparing their RNA and nitridation time, we investigated the 
rate and mechanism of the growth of AlNx barriers. 

 
Fig. 1.  Schematic diagram of the two kinds of fabrication processes. 

 

II. FABRICATION OF Nb/Al −AlNx/Nb SIS JUNCTIONS 
The junctions were prepared using either the standard 

Selective Nb Etching Process (SNEP) [15] or a contact-hole 

U 
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Fig. 2.  Setup of the sputtering machine. 

 
Fig. 3.  DC voltage as a fuction of time during a typical nitridation process. 

process. The sequences of these processes are described in 
Fig. 1. The wafers were made of fused quartz, 35 mm in 
diameter and 300 μm thick. The structures of the 
Nb/Al–AlNx/Nb trilayers were defined by a liftoff pattern 
made by the Canon FPA-3000 i5+ i-line stepper. The trilayers 
were deposited in the ULVAC CS200 ET sputtering machine, a 
schematic diagram of which is presented in Fig. 2. The typical 
background pressure in the sputtering chamber was 1 × 10-5 Pa. 
The lower Nb electrode had a thickness of 200 nm and a 
compressive stress of 0.2–0.8 GPa. Its resistivity at room 
temperature was ∼18 Ω⋅μm2. The thickness of the Al layer was 
∼10 nm. 

The nitridation of the Al films were performed in the 
load-locked chamber of the sputtering machine. The wafer was 
placed directly on the electrode that creates the rf discharge, so 
that the reactive nitrogen ions are accelerated by the dc 
potential and reach the wafer. The rf power during the process 
was kept at the lowest possible level that the generator can 
supply (1 W), in order to realize the slowest and softest (i.e., 
low energy) nitridation condition as possible. However, a 
larger rf power (6 W) was needed to ignite the plasma at the 
beginning of the process. In order to avoid any reaction that 
could take place during this unstable and high-energy phase, 
we adopted the following sequence which we call the 
“two-step-ignition” technique [14]: 

 
Fig. 4.  SEM image of an SIS junction after RIE etching with photoresist on 
top. The designed diameter of the junciton was 0.8 μm. 

1) Ignition of the plasma in pure He with a large power of 
6 W. 
2) Reduce the power to 1W which is suitable for the 
process. 
3) Introduce nitrogen into the chamber to start the 
reaction. 

An example of the dc voltage at the electrode as a function of 
time during the nitridation process is presented in Fig. 3. The 
nitridation time (tN) was defined as the time from introducing 
nitrogen till turning off the power. Using a mixture of N2 and 
He not only allows one to adopt the method mentioned above, 
but also enables one to control the dc voltage and the N2 partial 
pressure independently by adjusting the N2/He ratio. In other 
words, the density and the momentum of the nitrogen ions can 
be reduced simultaneously, which should benefit in realizing a 
slow and low energy process. The composition of N2 was set to 
10% by adjusting the flow rate of the two gases. The total 
pressure was 13 Pa. While we used Ar as the solvant gas in our 
former work [14], we used He this time to reduce any damage 
of the barrier caused by etching. 

After the nitridation, the upper Nb electrode was deposited to 
a thickness of 100 nm. An example of the photoresist pattern 
for junction definition is presented in Fig. 4. The junctions were 
round and had diameters ranging from 0.4 to 4 μm. The upper 
Nb electrode was etched by a CF4 + 3%O2 plasma in an RIE 
etcher. The lower electrode and the Nb wire layer (400 nm) 
were separated by 270 nm of SiO2. 
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III. RESULTS AND DISCUSSION 

A. DC I-V Characteristics 
Examples of dc I-V curves of SIS junctions with various 

RNA products are presented in Fig. 5. The normal-state 
resistance (RN) and the sub-gap resistance (Rsg) were 
measured at 4 and 2 mV, respectively. The leakage current 
began to increase at RNA ≤ 20 Ω⋅μm2, which was similar to 
our previous work using Ar to dilute the N2 plasma [14]. It 
was also found that the optimum sputtering time for the Al 
layer to achieve the smallest leakage current and largest gap 
voltage [16] was about half of what was optimum in the 
previous study. We speculate that a considerable amount of 
Al was etched by the Ar ions during the nitridation in the 
previous study, which reduced the final thickness of the 
Al–AlNx bilayer. 

In this study, we define the term “calibrated normal-state 
resistance” (RN,c) as the normal resistance after subtracting 
the sub-gap current portion from the dc I-V curve. We will 
refer to the RN,cA product rather than the nominal RNA product 
when we discuss the dependence of the resistivity or physical 
thickness of the barrier on the nitridation time, because the 
thickness of the barrier correlates exponentially only with the 
tunnel current, and not with the leakage current that goes 
through the pinholes. 

 

B. Dependence of RN,cA on Nitridation Time 
The dependence of RN,cA on the nitridation time is 

presented in the form of a log-log plot in Fig. 6, along with 
data collected from literature [5–8, 13, 14]. Critical current 
density values in literature were converted to RN,cA by 
applying the theoretical BCS relation: JCRN,cA=πΔ/2e. Our 
results are well fitted by a straight line that streches across 
nearly six orders of magnitude in RN,cA, which implies that 
there is a power law relationship between RN,cA and tN as 
follows: 

 
RN,cA = 6.5 ×10−6 tN

3.9 Ω⋅ μm2, (1) 
 
where tN is the nitridation time in s. It is also possible that the 
experiments by previous studies presented in Fig. 6 also 
follow certain power laws, but were not noticed because the 
data was collected for no more than 3 orders of magnitude in 
RN,cA. Nevertheless, if we fit every result with a power law of 
the form RN,cA = CtN

k, we observe that the power law index k 
has a range of 0.5 ≤ k ≤ 3.9. It is interesting that the data from 
our prior experiment using Ar as a solvent gas yields k = 1.8, 
which is considerably smaller compared to the He process, 
even though the total pressure, gas composition ratio and the 
applied power were kept the same. This implies that the 
species of the solvent gas has a significant effect on the 
growth rate of the AlNx layer. It should also be noted that the 
process of this work is one of the slowest to approach 10 
Ω⋅μm2, which is favorable in controlling the RNA at this 
range. The growth of the physical thickness of the AlNx layer 
(dAlNx) can be studied by converting RN,cA to dAlNx. The relation 
between RN,cA and the thickness of AlNx barriers has been 
studied in the range of RNA = 1–1000 Ω⋅μm2 for reactively 
sputtered AlNx barriers [3], and is roughly 

 
Fig. 5. DC I-V characteristics of junctions with various RN,CA products. 
 

 
dAlNx

= [0.20log(RN,cA) + 1.0] nm, (2) 
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where RN,cA is in units of Ω⋅μm2. If we assume that this relation 
holds up to RNA = 106 Ω⋅μm2, and that sputtered and 
plasma-nitridized AlNx have the same barrier height, the RN,cA 
v.s. tN relation presented in Fig. 6 can be converted into a 
growth curve of the AlNx layer as shown in Fig. 7. The growth 
is well fitted by the following logarithmic curve, presented as a 
solid curve in the figure: 
 
dAlNx = [0.36log(tN) - 0.17] nm, (3) 
 
where tN is again in units of s. The trend of the growth curve is 
consistent with the growth curve observed by an in-situ 
ellipsometric observation [17], which observed the nitridation 
to saturate at a certain thickness. However, we find that the 
logarithmic growth continues beyond RNA = 106 Ω⋅μm2 or dAlNx 
= 2 nm, and that it is probably difficult to realize a process in 
which the nitride growth completely stops at the range of our 
interest: RNA ∼ 101 Ω⋅μm2.  

Finally, we discuss the kinetics governing the growth of 
AlNx barriers during low energy rf plasma nitridation. As seen 
in Fig. 6, we found the nitride layer to grow according to a 
logarithmic law. Such a behavior is observed for example when 
thin Al films are oxidized at room temperature or below, and is 
theoretically explained by migration of the metal cations [18, 
19]. On the other hand, a parabolic curve (dAlNx � tN) also fits 
our data fairly well as shown by a broken curve in Fig. 6. Such 
parabolic growth laws are observed in reactions with relatively 
high energy, for example thermal oxidation of metals at 
temperatures around 103 K, and are theoretically explained by 
thermal diffusion [20–22]. In fact, Iosad et al. [8, 9] have 
carefully considered the energy of various species in the 
nitrogen plasma, and concluded that 

thermal diffusion of nitrogen is the dominant mechanism in the 
nitridation of the Al films. They estimated the power density of 
the nitrogen ions reaching their substrate chuck to be 5–9 
W·m-2 from direct Langmuir probe measurements. This value is 
similar to the upperlimit in our system (10 W·m-2), assuming 
that all of the applied rf power is uniformly dissipated on the 
driven electrode. Though our data is marginally better fitted by 
a logarithmic curve, additional experiments are definitely 
necessary to make a conclusion on the mechanism dominating 
the growth of the AlNx barriers. 

 
Fig. 6. Dependence of RN,cA on nitridation time. Data from literature are 
plotted together. Each data point of our data represents the average of about 
20 junctions on each wafer. The arrow shows that the data point is a lower 
limit, for the RN,cA could not be sufficiently corrected for the large leakage 
current. The lines are least square fits to each set of data. 

Fig. 7. Fig. 6 replotted, with the tunnel resistivity (RN,cA) converted to the 
thickness of the nitride. The solid and broken curves are logarithmic and 
parabolic least square fits, respectively. 

IV. CONCLUSION 
We fabricated Nb/Al–AlNx/Nb SIS junctions by plasma 

nitridation of Al, using N2 gas diluted with He. SIS junctions 
with decent quality can be fabricated using this process. There 
is a power law relationship between the RNA and tN that holds 
across RNA =100–106 Ω⋅μm2. This implies that the physical 
thickness of the AlNx barrier obeys a logarithmic growth law. 
These results will contribute to controlling the RNA of AlNx 
barrier SIS junctions. 
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