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Abstract — Flat-band conditions are usually reached in 
submillimeter-wave Schottky diode-based mixer operation. 
Numerical drift-diffusion (DD) models with conventional 
boundary conditions, which are based on the thermionic 
emission theory, do not correctly predict the behaviour of 
Schottky diodes under flat-band conditions so mixers 
performance cannot be accurately estimated. We employ a 
Monte Carlo simulator to analyze the performance of GaAs 
Schottky diodes in this operation regime. The results are 
employed for the refinement of DD model in the epitaxial 
layer. This new model is able to accurately predict the 
performance of submillimeter-wave mixers. 

I. INTRODUCTION 

 Harmonic balance simulators employing numerical 
physics-based models for Schottky diodes have shown 
very good results for the analysis and optimization of 
submillimeter-wave multipliers [1] and they might 
represent the best alternative for the design and 
optimization of Schottky mixers at millimeter and 
submillimeter-wave bands. These mixers usually reach the 
flat-band operation regime. Thus, an accurate modelling of 
the diodes under these conditions [2] is required. 
 When employing traditional drift-diffusion diode 
models to simulate Schottky mixers at and beyond flat-
band voltages, important discrepancies appear between 
measurements and simulations. These discrepancies 
consist of an anomalous increase in the simulated 
conversion loss when flat-band voltages are reached (Fig. 
1). Thus, physics-based drift-diffusion Schottky models 
must be refined in order to correctly simulate 
submillimeter-wave mixers. For this task, a deeper 
understanding of the transport phenomena through the 
Schottky barrier is required. 
 We have analyzed the response of typical Schottky 
diodes employed for submillimeter-wave applications by 
means of a Monte Carlo (MC) simulator [3]. We have 
found an excellent agreement between drift-diffusion 
results and Monte Carlo results below flat band conditions 
for different physical parameters as the charge 
concentration, the electric field and the electron velocities. 
However, beyond flat-band voltages, important differences 
appear due to non-local transport phenomena [4]. Monte 
Carlo results will be employed for the refinement of the 
DD model for GaAs Schottky diodes under flat-band 
conditions. The aim of this work is to provide an accurate 

numerical modelling for Schottky diodes beyond flat-band. 
This is a key point for an accurate analysis of the 
performance of Schottky diode-based mixers at millimeter 
and submillimeter-wave bands. 
 

 
Fig. 1: Comparison between measurements and simulations 
(including drift-diffusion Schottky diode models) for a 330 GHz 
SHP mixer fabricated at the Observatory of Paris [5]. 

 

   II. DESCRIPTION OF THE SIMULATION TOOLS 

a. Mixer CAD Tool 
The numerical CAD tool employed in this work 

couples a external circuit simulator with a physics-based 
drift-diffusion (DD) model of the Schootky diode by 
means of multi-tone Harmonic Balance (HB) techniques 
[6]. The Almost Periodic Fourier Transform (APFT) is 
utilized to perform the time-to-frequency transforms. Thus, 
no assumptions are made regarding the LO and RF power 
levels. 

The Schottky diode DD model accounts for the most 
important transport phenomena at the interface: barrier 
lowering, tunnelling, velocity saturation. 

 

b. Monte Carlo simulator for Schottky diodes 
Our Monte Carlo (MC) simulator has been developed 

at the “Tor Vergata” University in Rome (Italy) [3]. It 
consists of a band structure with three valleys at the 
conduction band (the central valley ‘Γ’ and the two 
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satellite valleys ‘L’ and ‘X’), and three valence bands 
(heavy-holes, light-holes and spin-orbit). Spherical 
constant-energy surfaces are assumed and non-parabolicity 
correction factors are applied for the calculations [3].  

The following scattering events are included in the MC 
simulator: acoustic phonon interaction, polar-optical 
phonon interaction, electron-plasmon interaction, impurity 
scattering, electron-hole scattering, intervalley scattering 
and impact ionization. 

 
   III. SCHOTTKY DIODE MODELLING UNDER 
         FLAT-BAND CONDITIONS 
 

a. Focusing the problem 
In order to focus the problem concerning the 

anomalous increase of the simulated conversion loss of 
Schottky mixers, we firstly compared the I-V curves 
obtained with DD simulation and MC simulation for a 
Schottky diodes with similar characteristics to the one 
employed in the 330 GHz mixer [5]. The Schottky diodes  
analysed in this section has the following parameters: A 90 
nm epilayer with doping concentrations varying from 
1·1016 cm-3 to 1·1018 cm-3

, anode area of 0.9 µm2, and a 
4·1018 cm-3 doping in the substrate (the length of the 
substrate has been reduced to 30 nm to speed up the MC 
simulations). 

It can be appreciated in Fig. 2 that an early saturation 
of DC current occurs according to DD results when 
compared to MC results. However, for DC voltages below 
flatband (~0.95 V) both simulation results agree very well. 
It has been also checked that the increase in the simulated 
conversion loss of the 330 GHz mixer (Fig. 1) starts at the 
LO power for which the peaks of the voltage swing in the 
diodes reach flat band voltages. 

 

 
Fig. 2: Schottky diode I-V curves as a function of epilayer doping 
obtained by Monte Carlo simulation (dashed lines) and drift-
diffusion simulation (solid lines). φb represents the ideal Schottky 
barrier height.  

 

The DD results for the internal distributions of the 
Schottky diodes are also in a big disagreement with MC 
results beyond flat band voltages. In Fig. 3 it can be 
noticed that an important increment in the electron 
concentration is predicted by MC in the vicinity of the 

Schottky contact under flatband conditions. On the 
contrary, DD predicts a homogeneous increment of the 
electron concentration throughout the epilayer. 
Discrepancies between MC and DD can be also 
appreciated in Fig. 4 for the electric field profiles. 

 
Fig. 3: Doping concentration as a function of the distance to the 
Schottky contact at different bias voltages. Monte Carlo 
simulations (dashed lines) and drift-diffusion simulations (solid 
lines). Epilayer doping is ND=2·1017 cm-3

. 

 

 
Fig. 4: Electric field as a function of the distance to the Schottky 
contact at different bias voltages. Monte Carlo simulations 
(dashed lines) and drift-diffusion simulations (solid lines). 
Epilayer doping is ND=2·1017 cm-3

. 

 

b. Analysing the problem 
The study of the internal distributions (electron 

velocities, electron distributions, populations of different 
valleys, electric field profiles, etc.) by means of MC 
simulation give us a physical insight on the limitations of 
DD and the modifications to be included in the DD 
formulation to overcome some of these limitations, 
especially at the Schottky contact. 

Figure 5 shows a peak in the velocities predicted by the 
MC simulator just after reaching flat-band conditions. This 
peak does not appear in DD simulations. 

The physical justification of this velocity overshoot can 
be deduced from Monte Carlo simulations (M. Lundstrom 
in [4]): When flatband voltages are reached, electron 
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population in the Γ valley grows as the electric field 
increases and electrons gain energy rapidly. The maximum 
occupation in the Γ valley corresponds to the peak of 
velocity (Figs. 5 and 6), and the dominant scattering 
mechanism is the optical phonon scattering. However, 
when electrons exceed a certain energy (0.3 eV for GaAs), 
intervalley scattering starts to dominate and the occupation 
in the satellite valleys (L and X) rises. Hence, velocity 
drops because of the higher effective mass of electrons in 
these valleys. 

An analogous effect occurs for the recombination 
velocity at the Schottky contact. MC results showed a 
recombination velocity twice higher than that shown in 
Fig. 5. This is due to the hemi-maxwellian velocity 
distribution in the vicinity of the Schottky junction [7]. The 
classical phormula for the recombination velocity given by 
Crowell and Sze [8], typically used in drift-difussion 
models, does not predict either the increment of the 
electron velocity by a factor of 2, or the existence of the 
velocity peak. 

The last analysis performed consisted of comparing the 
mobility curves obtained with both MC and DD models. 
Fig. 7 shows the mobility near the Schottky junction for 
different doping levels. It can be noticed that MC and DD 
results agree well below flatband voltages (corresponding 
to positive electric fields in Fig. 7). However, beyond 
flatband, the MC mobility drops at higher electron fields 
due to the peak in the average electron velocity. 
Furthermore, the field-dependent mobility depends on the 
distance to the Schottky junction as shown in Fig. 8.  

 

 
Fig. 5: Electron velocity as a function of the electric field for 
different epilayer dopings. Monte Carlo simulations (dashed 
lines) and drift-diffusion simulations (solid lines). Electric field is 
negative beyond flatband. 

 

 
Fig. 6: Valley population (obtained by Monte Carlo simulations) 
as a function of the electric field. Epilayer doping is ND=2·1017 
cm-3

. 

 

 
Fig. 7: Electron mobility as a function of the electric field for 
different epilayer dopings. Monte Carlo simulations (dashed 
lines) and drift-diffusion simulations (solid lines). Electric field is 
negative beyond flatband. 

 

 
Fig. 8: Monte Carlo electron mobility as a function of the electric 
field and the distance to the Schottky contact. Results are 
compared with the traditional DD mobility (Barnes phormula 
[9]). 
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c. Solving the problem 
The last step of this work was to refine our DD 

Schottky diode model by using the MC results previously 
discussed. A new recombination velocity at the Schottky 
contact, obtained from MC simulations, was defined in 
order to take into account that effect of the intervalley 
transitions. Also, a new field-dependent mobility 
characteristic as a function of the doping level, the distance 
to the Schottky contact and the epilayer length has to be set 
in the DD model. The most accurate modeling should 
define a different mobility at each position in the Schottky 
diode. However, it is enough to define two regions in the 
epilayer. The regions are indicated in Fig. 9. The first 
region is characterized by an almost constant electric field 
for a given voltage, and therefore, the mobility in this 
region can be assumed to be constant. In the second region 
close to the Schottky contact, the mobility predicted by 
MC is far from the mobility expression given by Barnes 
[9] (see Fig. 8). The field-dependent mobility characteristic 
to be used in DD is derived from MC results by assuming a 
negligible effect of diffusion (that is, drift velocity is 
dominant and velocity can be written as the product of 
mobility and electric field). Next, this mobility is slightly 
tuned to improve the agreement between MC and DD 
internal distributions. 

Further analyses are being carried out to obtain a 
general rule for automatic segmentation of the epilayer for 
which different mobility characteristics are employed. 

The results after the corrections on the DD model are 
shown in Figs. 9 and 10. The early saturation of the current 
that was shown in Fig. 2 is also corrected and the new I-V 
curves obtained with the adjusted DD model match pretty 
well the MC results. 
 
 

 
Fig. 9: Electric field as a function of the distance to the Schottky 
contact at different bias voltages. Monte Carlo simulations 
(dashed lines) and drift-diffusion simulations (solid lines). 
Epilayer doping is ND=2·1017 cm-3

. 

 

 
Fig. 10: Doping concentration as a function of the distance to the 
Schottky contact at different bias voltages. Monte Carlo 
simulations (dashed lines) and drift-diffusion simulations (solid 
lines). Epilayer doping is ND=2·1017 cm-3

. 

 

III. 330 GHz SHP MIXER SIMULATION 

Harmonic Balance simulations of the 330 GHz SHP 
Schottky mixer described in [5] were performed with the 
new DD model for the Schottky diode. The Schottky diode 
employed in the design and fabrication of the mixer is the 
SD1T7-D20 from the University of Virginia. The 
characteristics of this diode (provided by the University of 
Virginia) can be found in [5]: An epitaxial layer of 100 
nm, an anode area of 0.9 µm2, an epilayer doping of 2·1017 
cm-3, a built-in potential of 0.72 Volts, a zero junction 
capacitance of 1.3 fF and a series resistance of 11-15 Ω. 

The DC analysis of the diode showed a series 
resistance of 14 Ω and a 1.3 fF zero junction capacitance, 
Cj0, that are in good agreement with the nominal values 
specified by the University of Virginia. The optimum 
impedances employed in the simulation were optimized at 
a 1.5 mW LO power in absence of parasitics: 
ZRF=77+j·138 Ω and ZLO=142+j· 238 Ω. These values are 
very close to those considered in [5]: ZRF=83+j·53 Ω and 
ZLO=147+j·207 Ω. A 100 Ω IF output impedance has been 
considered in both the fabrication and the simulation of the 
330 GHz mixer. This value is optimum for the antiparallel-
diode pair according to [5], and agrees with the result 
provided by the IF impedance optimization performed with 
our CAD tool. The parasitic 
capacitance of the fabricated mixer is 5 fF according to 
[5]. The optimum impedances (when Cp is considered) that 
are predicted by our CAD tool (ZRF=5+j·56 Ω and 
ZLO=4+j·120 Ω) are very different to those employed in the 
fabrication of the 330 GHz mixer so we have considered 
that the parasitic capacitance was no tuned out in the 
results presented in [5]. In order to make possible the 
comparison, the quasi-optical losses (0.7 dB) and the 
losses in the IF circuit and SMA connectors (2.5 dB) 
predicted in [5] have been added to the simulation results. 

Taking into account all these considerations, the new 
results are provided in Fig. 11. The adjusted DD model 
eliminates the anomalous increase in the conversion loss 
that occurred with the previous model when flatband 
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voltages were reached. As a consequence, new simulation 
results are in a very good agreement with measurements, 
certifying the validity of the correction done. 
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Fig. 11: Comparison between measurements and HB simulations 
with the new adjusted DD Schottky model for the 330 GHz SHP 
mixer. 

 
 

IV. CONCLUSION 

Limitations of present DD models for Schottky diodes 
operating above flatband voltages have been presented in 
this work. Mixer designs based on these models are not 
accurate enough, and, therefore, a refinement of DD 
models is necessary. 

Monte Carlo models can be used for a better 
understanding of the physics inside Schottky diodes. 
However, mixer design including MC models is not viable 
due to the high computational cost. Hence, circuit 
simulation with refined DD models offers a very good 
trade-off between accuracy and computation time for 
submillimeter-wave mixer design, as the agreement 
between measurements and simulations for a 330 GHz 
SHP mixer shows. 

This work is part of an effort to establish a numerical 
CAD tool for the design and optimization of millimetre-
wave and submillimeter-wave circuits based on Schottky 
diodes and HBV diodes including accurate physical 
models for the semiconductor devices. 
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