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Abstract— : We report on the design, build and characterisation 
of an integrated submillimetre wave receiver featuring a 380 GHz 
sub-harmonic mixer and a 190 GHz frequency doubler on a single 
quartz based microstrip circuit. The integrated circuit uses two 
separate planar Schottky diode components to perform the 
doubling and 2nd harmonic mixing. Measurement results give best 
double sideband mixer noise temperatures of 1625 K at 372 GHz, 
and a corresponding mixer conversion loss of 8 dB. The measured 
instantaneous RF bandwidth extends from 368 GHz to 392 GHz, 
in good agreement with simulations. This work represents the first 
demonstration of a single substrate integrated mixer/multiplier at 
submillimetre wavelengths. 

 
Index Terms— Submillimetre wave receiver, integrated 

mixer/multiplier, planar Schottky diodes. 

I. INTRODUCTION 
 
Submillimetre receiver arrays are expected to enhance the 
capabilities of future airborne and space-borne atmospheric 
limb sounding instruments. For example, Schottky diode based 
heterodyne array instruments will not only allow observations 
with greater sensitivity than single pixel sounders, but will also 
provide vertically and horizontally resolved information on 
global distributions of key species in the Earth’s upper 
troposphere and lower stratosphere (e.g., the STEAM-R 
concept [1]).  One way of avoiding difficulties associated with 
local oscillator (LO) generation and injection in an array of 
receivers is to integrate the mixer and LO provision within 
each pixel; in principle this will allow reduced size, mass and 
power consumption, and an easily extendable array concept.  
Here we investigate the integration of a subharmonic mixer 
with a frequency doubler based on planar Schottky diodes, 
since this is the method generally used to provide the local 
oscillator signal in a sub-millimetre receiver. 
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Due to the efficient and mature modelling techniques for planar 
Schottky diode devices at submillimetre wavelengths, coupled 
with the monotonic increase in available computing power, 
mixer and multiplier circuits which were previously designed 
and packaged independently are now being incorporated in a 
single housing [2]. However, no mixer/multiplier device 
integrated on a single circuit carrier has been reported so far in 
the submillimetre wave domain. We report here for the first 
time the development of an integrated 380 GHz sub-harmonic 
mixer/doubler using a single quartz substrate. 
 

II. 380 GHZ INTEGRATED MIXER/MULTIPLIER DESIGN 
ARCHITECTURE 

 
The 380 GHz integrated mixer/doubler design concept features 
a balanced doubler stage and a sub-harmonic mixer stage in a 
single circuit, as illustrated in Fig.1. The integrated circuit 
performs the second harmonic mixing between the output LO 
signal of the doubler stage and the RF input signal of the mixer 
stage. The main advantage of using a balanced diode 
configuration is the possibility of decoupling the input 
matching circuit for the fundamental frequency, circa 95 GHz, 
and the RF input matching circuit without additional filtering 
elements, as shown in Fig.1. This is due to the natural input 
and output mode separation of a balanced configuration, 
further detailed in [3]. The reduced dimensions of the 
microstrip channel help to prevent the third and fifth 
harmonics, generated by the doubler diodes in a parasitic TE 
mode, from propagating towards the mixer diodes. The fourth 
harmonic, generated in a quasi-TEM mode, is strongly rejected 
by the RF low-pass filter as it falls into the RF frequency band. 
In the selected approach, each series pair of the balanced 
doubler diodes can be biased independently from the sides of 
the input waveguide, rather than from the central microstrip 
line usually used in balanced doubler architectures [4]. A bond 
wire is used to provide both a DC ground for the doubler 
diodes and an IF ground for the sub-harmonic mixer diodes via 
the central microstrip line. Its length is set as a quarter 
wavelength at the LO frequency in order to affect minimally its 
propagation. The bond wire does not significantly disturb the 
RF matching circuit since the RF signal is already attenuated 
strongly by the low pass filter at this point. 
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Fig.1. Schematic diagram of the integrated receiver. RF input is from 370 to 
390 GHz, whereas the fundamental input frequency is about 95 GHz.  
 
The design methodology uses a combination of linear/non-
linear circuit simulations (Agilent ADS [5]) to optimize and 
compute the performances of the circuit, and 3D EM 
simulations (Ansoft HFSS [6]) to model accurately the diodes 
and waveguide structures.  
 
As a first step, the electrical models for the doubler and mixer 
diodes are linearised around their optimum operating point. 
The electrical parameters of the doubler’s VDI SB6T4-R1 
varactor diodes [7] are a series resistance of Rs = 5 Ω, 
saturation current Isat = 146 pA, a zero voltage capacitance 
Cjo = 42 fF, an ideality factor η = 1.2, a built-in potential 
Vbi = 0.83 V and an anode diameter d = 6 µm. An additional 
linear capacitance corresponding to approximately 4% of Cjo is 
introduced in parallel to the non-linear plate capacitance of the 
junction to include the edge effect [8]. Considering an 
available input power of 9 mW at 95 GHz and a bias voltage of 
-3 V per diode, an ideal input embedding impedance of Zin = 
8.5 + j.68, and an output embedding impedance of Zout = 13 + 
j.34  at a frequency of 190 GHz is found for a single barrier.  
 
For the subharmonic mixer, the electrical parameters of VDI’s 
SC1T9-D20 diodes used are a series resistance Rs = 10 Ω, a 
zero voltage junction capacitance of Cjo= 2.5 fF, saturation 
current Isat = 30 fA, ideality factor η=1.25 and built-in potential 
Vbi = 0.73 V. Considering an optimum LO power level of 
1.5 mW, a set of non-linear simulations gives an ideal 
embedding impedances of approximately ZRF = 47+j.46 at RF 
frequencies and ZLO = 63+j.121 at LO frequencies. The IF load 
impedance is set to 100 Ω.  
 
In a second step, each part of the circuit is modelled 
electromagnetically with HFSS, and imported in ADS for 
further optimisation. In order to retrieve the S-parameters at the 
level of each Schottky barrier in the doubler and mixer devices, 
micro-coaxial probe ports are introduced [9]. A simple low-
pass filter is required to prevent the RF signal from leaking into 
the doubler stage and to transmit the LO signal to the mixer 
stage. Single layer chip capacitors (model Tcap® from DLI 
[10]) with minimum dimensions of 254 µm x 254 µm x 76 µm 

are used to present a shunt resonance at fundamental and LO 
frequencies for the doubler stage, allowing independent DC 
bias to be applied to each branch. On the mixer stage, a similar 
chip capacitor is reduced in size using a dicing saw in order to 
present a shunt resonance at LO and RF frequencies, allowing 
the transmission of the IF signal to the output. 
 
The circuit is optimized for best coupling of the fundamental 
signal to the doubler diodes, the LO signal from the output of 
the doubler stage to the mixer stage, and the RF signal to the 
mixer diodes. As an example, the total coupling efficiency 
between the doubler and the mixer diodes is presented in 
Fig. 2. It is obtained by summing the individual coupling 
efficiencies between each of the doubler diodes and mixer 
diodes, and is estimated to be between 60 % and 70%, from 
186 GHz to 196 GHz. The simulated RF input return losses of 
mixer circuit stage are given in Fig.3, showing a predicted RF 
bandwidth extending at least from 370 GHz to 390 GHz.  
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Fig.2. Predicted coupling efficiency between the doubler and the mixer stages 
at LO frequencies.  
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Fig.3. Predicted waveguide return losses in as a function of RF, assuming 60 
mW of input power at the fundamental frequency. 
 

III. 380 GHZ INTEGRATED MIXER/MULTIPLIER FABRICATION 
 
The integrated circuit includes an anti-parallel pair of planar 
Schottky diodes (ref. SC1T9-D20 from VDI) for the 380 GHz 
sub-harmonic mixing part, and an anti-series array of 4 planar 
Schottky Varactor diodes (ref. SB6T4-R1 from VDI) for the 
multiplier part. The latter component has originally six 
Schottky devices. However, one diode at each extremities is 
removed to produce the configuration shown in Fig. 4, which 
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reduces the amount of input power required. Both mixing and 
multiplying diodes components are flip-chip mounted onto a 
single quartz based microstrip circuit. The quartz substrate is 
cut into the required “T” shape using a precision dicing saw. 
This geometry is needed to accommodate the different 
dimensions of the two Schottky devices and to prevent higher 
order modes, as described above, from propagating inside the 
circuit.  
 
Then, the quartz based circuit is mounted inside the lower half 
of the split-block and connected via beamleads to the three 
ceramic chip capacitors, as shown in Fig.4. Gold bond wires 
are then contacted to the circuit using a conductive silver-
epoxy glue as a final step of the mounting procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Top: labelled schematic of the integrated design and, bottom, a 
photograph of the circuit after mounting into the lower half of the split metal 
block 
 
The assembled 380 GHz block shown in Fig.5 includes two 
SMA DC bias ports, a K-type IF output connector (right hand 
side), a WR-10 input flange for the fundamental input signal 
(not visible, on the left-hand side), and an integrated diagonal 
RF horn antenna [11] with aperture visible on the front of the 
block. The IF microstrip-to-K connector transition is designed 
to present low insertion losses from DC up to 40 GHz. 
 

 Anti-series array of 
Schottky Varactor 
diodes 

Anti-parallel pair 
of Schottky diode

 
Fig.5. Photograph of the final integrated mixer/multiplier assembled block. 

IV. TEST OF THE INTEGRATED 380 GHZ RECEIVER  
 

For testing, the 380 GHz integrated mixer/multiplier is driven 
by a BWO whose output power is controlled by a separate 
rotary vane attenuator. In order to maximize the matching at 
the fundamental frequency, an E/H tuner is inserted after 
variable attenuator. Both DC bias lines to the doubler stage are 
connected to a stabilized low noise DC power supply. The IF 
signal is amplified by a low noise amplifier chain, with a noise 
figure of 1.4 dB, which included a filter with a pass band 
between 2.5 GHz and 3.5 GHz. The output power of the 
amplifier chain is measured using an HP 8481D diode power 
sensor.   

RF microstrip 
low

 
Test results presented in Fig.6, show the double side band 
(DSB) receiver noise temperature, DSB mixer noise 
temperature and DSB mixer conversion losses as functions of 
four times the fundamental signal frequency. The best DSB 
receiver noise temperature obtained is 2330 K at an RF 
frequency centred at 372 GHz, corresponding to a DSB mixer 
noise temperature of 1625 K and DSB mixer conversion losses 
of 8 dB. The measured conversion losses are between 1.2 dB 
and 2.5 dB above the predicted ones. The 3 dB conversion 
losses bandwidth extends from a RF centre frequency from 368 
GHz to 392 GHz, apart from degradation in performances 
around 380 GHz, due to a lack of LO power delivered to the 
mixer stage. This could arise from a drop of power from the 
BWO at the fundamental frequency as it has been observed by 
a measurement of the output power of the BWO at this 
frequency, and/or a resonance in the LO matching circuit at 
190 GHz.   
 
Despite the possibility to bias independently each branch of the 
doubler diodes array, it is noticed that the performances are 
optimum when both branches are biased with the same voltage, 
with equal resulting DC currents, giving an indication that the 
power coupled to the diodes is well distributed between both 
branches.  
 
 

DC/IF by-pass 
chip capacitors 

pass filter 

DC/IF ground 
bond wire 

W
R

-10 LO
 input 

w
aveguide

W
R

2.
8 

R
F 

in
pu

t 
w

av
eg

ui
de

 

18th International Symposium on Space Terahertz Technology 

294



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1000

2000

3000

4000

5000

6000

7000

364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394

4x fundamental frequency (GHz)

D
S

B
 n

oi
se

 te
m

pe
ra

tu
re

 (K
) ,

0

2

4

6

8

10

12

14

D
S

B
 m

ix
er

 c
on

ve
rs

io
n 

lo
ss

es
 (d

B
) 

Fig.6. Measured double sideband performance of the 380 GHz integrated mixer/multiplier as functions of the RF frequency. The IF band extends from 2.5  
to 3.5 GHz. The bottom red squares show the DSB mixer noise temperature, the middle blue diamonds show the DSB receiver noise temperature and the top 
pink triangles show the DSB mixer conversion losses. 
 

I. CONCLUSION REFERENCES  
  
The first operation of an integrated sub-millimetre wave 
receiver featuring a doubler and a sub-harmonic mixer stage on 
a single substrate is reported. Over nearly all of the designed 
RF bandwidth, conversion losses between 8 and 10 dB and 
DSB noise temperatures between 1625 and 3000 K were 
measured. These agree relatively well with the simulation. An 
observed degradation in performance at 380 GHz is attributed 
to a loss in LO power delivered to the mixer stage. The device 
demonstrates that it is possible to couple efficiently the output 
signal of a doubler stage to a sub-harmonic mixer circuit when 
both are mounted on the same microstrip quartz-based circuit. 
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