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Abstract― Any bolometer that is greater than a few wavelengths 
in size is receptive to the power in a number of fully coherent 
optical modes simultaneously.  Knowing the amplitude, phase, 
and polarisation patterns of these modes, and their relative 
sensitivities, is central to being able to use a multimode detector 
effectively. We describe a procedure for measuring the spatial 
state of coherence to which a detector is sensitive.  
Diagonalisation of the coherence function then gives the natural 
modes.  The scheme is based on the result that the expectation 
value of the output of any detector, or indeed whole instrument 
or telescope, is given by the contraction of two tensor fields: one 
of which describes the state of coherence of the incoming 
radiation, and the other describes the state of coherence to 
which the detector is sensitive. It follows that if a detector is 
illuminated by two coherent point sources, in the near or far 
field, and the phase of one source rotated relative to the other, 
the output of the detector displays a fringe. By repeating the 
process with different source locations, the detector’s coherence 
tensor can be reconstructed from the recorded complex 
visibilities. This new, powerful technique is essentially aperture 
synthesis interferometry in reverse, and therefore many of the 
data processing techniques developed in the context of 
astronomy can be used for characterising the optical behaviour 
of few-mode bolometers. 
 

I. INTRODUCTION 
 
The use of bolometric detectors in far-infrared and 
submillimetre astronomy is now widespread.  In many 
instruments, the bolometers are antenna-coupled [1] – for 
example, Planck-HFI [2] and CLOVER [3] – meaning that an 
absorber loads a single-mode antenna, which in turn 
illuminates a telescope. The advantage of this arrangement is 
that it is well known how single-mode antennas couple to 
optical systems, allowing precise control of the beam pattern 
on the sky.  In fact, because the system is single-mode, it is 
straightforward to propagate the beam pattern of the detector 
through the optical system, and onto the sky. In the case of 
large-format imaging arrays, however, there is a tendency to 
use free-space absorbing pixels. This configuration can give 
full, instantaneous sampling of the sky, and high absorption 
efficiency in a number of optical modes simultaneously. A 
major problem, however, is that the optical coupling between 
the telescope and detector is poorly understood, and there is 

no obvious way of fully characterising the reception pattern, 
largely because it is partially coherent. It is tempting to treat 
these systems in a similar way to CCDs in optical astronomy, 
and assume that each pixel is simply re-imaged on the sky.  
This approximation assumes the incident field is fully 
spatially incoherent, and that the pixel collects, on a point-by-
point basis, all of the radiation that is incident on it: 
sometime called a ‘light bucket’. The radiation in a telescope 
at a particular frequency, although thermal in origin, is 
spatially correlated over length scales of at least a wavelength 
by virtue of  the free-space Maxwell’s equations, which only 
allow spatial variations over scales sizes of greater than a 
wavelength, and only allow divergence-free fields: combined 
these give black body radiation.  Additional correlations may 
be introduced by the telescope optics.  In an optical 
telescope, the pixels are typically much larger then a 
wavelength, and so the incoherent approximation holds. In 
far-infrared and submillimetre astronomy, however, the 
dimensions of the pixels are similar to a wavelength, which is 
typically the same as the coherence length, including 
polarization, of the radiation. To understand how a bolometer 
couples to a telescope, we therefore need a way of 
characterising the response of multimode detectors to fields 
in any state of spatial coherence. 
 
In this paper, we describe an experimental technique for 
determining quantitatively the sensitivity of bolometric 
detectors to fields in any state of spatial coherence.  We 
begin by introducing a parameterisation of a bolometer's 
behaviour in terms of the set of modes to which it is 
sensitive; this gives rise to a response function, which can be 
used to characterise the behaviour of any detector or 
complete system. Next we describe how two phase-locked, 
coherent, radiation sources can be used to measure the 
response function experimentally.  Finally we discuss 
experimental apparatus that is being constructed to 
demonstrate and develop this method.  In order to have 
numerical simulations against which the experimental data 
can be compared, we will present work that has been carried 
out on modelling the response function of free-space planar 
absorbers.  Our model emphasises diffractive effects caused 
by the finite size of the absorber, and which, to first order, 

19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April 2008

329



 

 

can be considered independent of the specific absorption 
mechanism at work. A sharp change from multi- to few-
mode behaviour is observed when the dimensions of the 
absorber become smaller than the wavelength of the radiation 
being absorbed. 
 
It is worth emphasising that the methods described are very 
general, and can be applied any type of bolometer or system, 
at any wavelength.  For example, it should be possible to 
distinguish between the behaviour of pixels having 
continuous thin films as absorbers, and pixels having 
frequency-selective surfaces, such as tightly packed arrays of 
thin-film dipoles. Further, although the emphasis is on 
characterising the behaviour of single, free-space bolometers, 
the same technique can be applied to systems such as 
imaging arrays and phased arrays.  In the case of 
measurements on antenna-coupled bolometers, which are 
theoretically single-mode, it is possible that the technique 
will reveal other unexpected ways for radiation to couple 
power into the absorbing element.  For example, the incident 
radiation might cause ohmic heating of a planar antenna, 
which is then conducted to the bolometer.  Many other 
effects, such as surface waves, might contribute. 
 

II. PARAMETERISING BOLOMETER RESPONSE 
 

EM plane wave
ωfrequency, 

Bolometer

��
��
��

��
��
��

ωE(   ,    )Ω

Ω

 
 
Fig. 1  A bolometer being illuminated with monochromatic plane wave 
radiation.  The notation used in the theoretical discussion is illustrated. 
 
To begin with, a way of parameterising the relationship 
between the state of spatial coherence of the incident 
radiation and the output of the detector is needed.  This 
problem has been addressed by Saklatvala and Withington in 
[4] and [5].  They have shown that is possible to characterise 
a bolometer in terms of a set of fully coherent modes of the 
incident field in which the detector is simultaneously 
sensitive to power, along with a set of coefficients that 
describe the relative influence of each of the modes on the 
detector's output.  We outline the approach here.  In this 
paper we will consider only incident radiation that is 
statistically stationary.  In this situation, the power absorbed 
at different wavelengths can be treated independently, and at 
each wavelength there is a different set of spatial modes and 
coefficients.  It is also possible to deal with non-stationary 

fields, but this requires spatio-temporal modes and these will 
not be discussed here. 
 
Consider a bolometer being illuminated by monochromatic 
plane radiation with frequency ω as shown in Fig. 1.  The 
incident field is described by a vector function E( Ω̂ ,ω) 
which gives the complex electric field amplitude of the plane 
wave incident from the direction Ω̂ .  Consider for the 
moment replacing the bolometer with a classical antenna.  
The net power, P(ω), absorbed by the antenna from the field 
would be given by: 
 

2

2 ),ˆ(),ˆ(*ˆ)( ∫ ⋅=
S

dP ωωω ΩEΩRΩ , (1) 

 
where R( Ω̂ ,ω) is called the antenna reception pattern [6] and 
the integral is taken over all possible incidence directions.  
Equation (1) is simply the full vector form of more familiar 
antenna reception relations.  A classical antenna is an 
example of a single-mode detector.  Equation (1) simply 
describes mathematically the process of determining the 
power carried in the single mode – described by R( Ω̂ ,ω) – 
by the incident field.  The logical extension of (1) to 
multimode-detectors is: 
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where p(ω) is the detector output.  The { U (n) ( Ω̂ ,ω) } are 
the set of fully coherent modes of the field in which the 
detector is simultaneously sensitive to power.  We shall refer 
to these modes as the natural optical modes of the detector.  
As modes, they are 'orthogonal' to one another in the sense 
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In (3) we have further assumed that the modes are 
individually normalised.  The set of coefficients {γ(n)} 
quantify how the output of the bolometer changes with the 
power in each mode.  The set of normalised coefficients, {γ(n) 

/ Σ m γ (m) }, gives, therefore, an indication of the relative 
responsivity to the power in each mode.  In the case where 
the incident field is partially coherent, we can take the 
ensemble average, < >, of (2) to obtain 
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where we have expanded out the norm.  The double-dot 
denotes two scalar products, one between the inner pair of 
vectors followed by one between the outer pair.  The natural 
modes of the detector can be taken outside the ensemble 
average because we have assumed previously they are fully 
coherent.  Defining the dyadic fields 
 

∑ ∗=
n
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)(
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and 
 

),ˆ(),ˆ(),ˆ,ˆ( 2121 ωωω ΩEΩEΩΩ ∗=E , (6) 

 
which is the cross-spectral density of the incident field, 
equation (4) becomes 
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which reproduces the results of Saklatvala and Withington, 
which were derived in a more rigorous way.  We see that 

provided ),ˆ,ˆ( 21 ωΩΩD  is known, it is possible to calculate 
the output of a detector when it is subjected to any 

illuminating field.  We shall thus take ),ˆ,ˆ( 21 ωΩΩD , which 
we shall refer to as the detector response function, as our 
parameterisation of the detector behaviour.   A useful 

physical interpretation of the meaning of ),ˆ,ˆ( 21 ωΩΩD can 
be obtained by taking the ensemble average of (1), expanding 
the norm and using (6) to obtain 
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We see that the detector response function corresponds to the 
cross-spectral density of the reception pattern.  We can 
therefore think of it as describing the state of spatial 
coherence of the field to which the bolometer is sensitive.  In 
the special case of an antenna, this field is fully-coherent.  In 
the case of a multimode detector, it is partially coherent and 
the natural optical modes of the detector correspond to what 
are known as the coherent modes of the field [7]. 
 
In the next section we will discuss how the detector response 
function can be determined experimentally.  However, 
sometimes is also useful to know the natural optical modes of 
the detector.  Although no single reception pattern exists for a 
multimode bolometer, we can propagate the optical modes of 
the detector though the telescope to find a set of beam 
patterns on the sky to which the bolometer is independently 
sensitive.  The natural optical modes of the detector can be 
found by solving the following equation: 
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This is an eigenfunction equation.  We see that the γ(n) that 
describe the responsivity of the detector to the power in each 
mode are the eigenvalues of the detector response function. 

 
III. EXPERIMENTAL DETERMINATION OF THE 

DETECTOR RESPONSE FUNCTION 
 

Ea a

Ωa

bEb

Ωb

Pair of phase−locked,
coherent, plane waves

Bolometer

output

 
 
Fig. 2  Diagram of the characterisation procedure.  An element of the 
detector response function can be obtained from the visibility of the fringes 
in the output signal that result from rotating the phase difference between the 
incident waves. 
  
Consider placing two monochromatic, point-like, radio 
sources operating at the same frequency, ω0, in the far field 
of a detector.  Assume that the sources are individually fully 
coherent and, further, that they are phase-locked to one 
another with a controllable differential phase angle, Δψ.  
They produce, at the detector, a pair of phase-locked plane 
waves, as shown in Fig. 2.  The polarisation states, amplitude 
and direction of incidence of the waves depend on the source 
positions and orientations.  For the plane waves shown in 
Fig. 2, the incident field is of the form 
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Substituting (10) into (7) we obtain 
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where we have used the shorthand for the matrix elements 
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From (5) we have that 
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We can also argue that (13) must be true as otherwise we see 
from (11) that the detector output would depend on the way 
the plane waves are labelled, which is arbitrary.  Using (13) 
we can simplify (11) to 
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Consequently as the phase angle between the sources, Δψ, is 
rotated we expect the output of the detector to show fringes, 
as in Fig. 3.  Provided we know Ea and Eb, from the 
amplitude and phase of this fringe pattern, we can determine 
both the modulus and phase of ),ˆ,ˆ( 0ωbaabD ΩΩ .  From (13) 

it also follows that we measure ),ˆ,ˆ( 0ωabbaD ΩΩ . By 
repeating this process with different source locations – to 
change the incidence angle of the plane waves – and different 
source orientations – to change the wave polarisations – it is 
possible to map out the detector response function in full and 
characterise the bolometer.  Subsequently, we can obtain the 
natural optical modes of the detector by solving (9). 
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Fig. 3  Expected form of the output in Fig. 1 when the phase difference 
between the illuminating waves is rotated. 
 
It might appear that a large number of measurements will be 
needed to characterise a device, but this is not the case.  
Consider an example where we are trying to sample the 
detector response function over a set of N different 
illumination directions.  Naively we might expect to have to 
make ~2N2 measurements.  There are N illumination 
directions with two possible polarisation states in each case, 

giving (2N)2 possible arrangements of two sources.  
However, because of (13) we only need to measure half of 
these combinations.  In fact, the actual number of degrees of 
freedom is fixed by the number of modes, n, of the incident 
field in which the detector is sensitive to power.  From (5) we 
expect the number of degrees of freedom in the values 
measured to be ~(2N+1)n, corresponding to 2N degrees of 
freedom per mode plus an additional n degrees of freedom in 
the γ(n).   When n is less than N, there are fewer degrees of 
freedom than measurements and the system is highly 
constrained.  It should therefore be possible to impute the full 
set of data from a smaller subset of measurements.  
 
We are currently investigating an imputation strategy based 
on work of Brand [8], who worked on imputing missing 
values in matrices of data.  In the case of sampled data, the 
detector response function reduces to a matrix, with the 
missing values corresponding to readings not taken yet.  
Brand’s algorithm was originally intended for use in online 
recommender systems for retail, where it would be used to 
fill in missing product reviews based on the incomplete 
reviews supplied by the user.  There are two reasons why his 
strategy is particularly attractive to us.  Firstly, it imputes the 
missing values so that the completed matrix has the lowest 
rank – i.e. degrees of freedom – possible.  Secondly, because 
it is intended to be used online, it has been designed so that 
the imputed values can be updated in linear time as new data 
arrives.  It should therefore be possible to calculate the 
prediction in real time as the experiment is performed; 
updating the current best estimate as additional scans are 
performed. Although there are many possibilities, basically 
speaking, once the singular values have converged, we will 
know that we have taken sufficient data and can stop. 
 
There are also other methods available for reducing the 
number of measurements that need to be taken.  Up to this 
point we have discussed characterising the response of the 
bolometer to plane-wave illumination from all possible 
directions. In practical applications, however, the 
illumination angles are likely to be restricted, and it 
obviously makes sense to only characterise the detector over 
its working range.  Equation (9) can be solved over this 
restricted range of illumination angles to find the set of 
detector natural modes over the restricted region.  These are 
likely to be different to the natural modes over the full range 
of incidence directions, but can be used equivalently.  This 
approximation saves greatly on the number of measurements 
needed.   
 

IV. EXPERIMENTAL VALIDATION OF THE 
TECHNIQUE 

 
We plan to demonstrate the validity of the proposed 
technique by using it to investigate the power reception 
characteristics of planar absorbing structures with dimensions 
similar to or smaller than the wavelength of the illuminating 
radiation.  In this section, we will describe the experimental 
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system, and theoretical work we have been doing to predict 
the behaviour that should be seen. 
 

 
 
Fig. 4  Photo of the system being developed to perform the characterisation 
measurements.  The object in the foreground is a test sensor for checking the 
operation of the sources.  In the background, the powered slides and sources 
can be seen. 
 
Fig. 4 is a photograph of the apparatus in its current form.  
We are using two, 195-270GHz sources, which are mounted 
on powered slides to allow different illumination angles.  The 
sources can also be rotated manually to allow different 
polarisation angles.  In practise, rather then operating the 
sources at the same frequency, as suggested previously, we 
instead intend to drive them at slightly different frequencies, 
with the offset derived from a common reference.  The idea 
is that if the offset frequency is sufficiently small, the field 
that results will approximate two plane waves at the same RF 
frequency whose relative phase varies periodically in time.  
The advantage of this approach is that the need for a separate 
phase shifter is eliminated. In its more extreme form, where 
the difference frequency is scanned over a large range, the 
full spatio-temporal state of coherence of the detector’s 
response can be found. 
 
In the foreground of Fig. 4, a calibration detector from 
Thomas Keating Ltd can be seen, which we are using to 
check the operation of the basic instrument.  The detector is 
mounted on a powered slide to allow the distance between 
the sources and the detector to be modulated, which will 
allow the effects of standing-waves to be removed.  Our early 
experiments will simulate planar absorbers of different 
dimensions by placing appropriate apertures over the face of 
the detector.  Later, we hope to use a range of room-
temperature detectors, based on suspended SixNy islands, 
similar to the structures used for Transition Edge Sensors.  A 
schematic of the design is shown in Fig. 5.  An advantage of 
this approach is that we will be able to study the behaviour of 
many different configurations, and some of the designs can 
be close to the geometries used in ultra-low-noise free-space-
coupled bolometers. 

 
Suspended island design
gives high thermal 
isolation and low heat
capacity

Thermometry is on
the other side of the
island.

Radiation absorbing
surface.  Possibilities
include a metallic film
or a Salisbury screen
type absorbing layer.

We are investigating
resistance and
radiometric
thermometers

 
 
Fig. 5  Concept drawing for model planar bolometer for use in the validation 
experiments described.  The design is based on a suspended silicon nitride 
island structure and it is intended to operate it at room temperature. 
 

V.  THEORETICAL MODEL OF A PLANAR 
BOLOMETER 

 
In this section, we describe work that has been done on 
modelling the detector response function of planar 
bolometers.  The purpose of the study was to develop 
numerical simulations against which experimental data can 
be compared.  Out intention was to investigate the way in 
which performance of a planar bolometer is influenced by its 
size, independent of the specific power absorption 
mechanism at work.  To this end we assumed the absorption 
mechanism was ‘ideal’, so that our model represents in some 
way, the best possible performance obtainable from a ‘real’ 
detector of the same dimensions. 
 
A.  Details of Model 
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Fig. 6  Diagram illustrating the model pixel considered and the notation used 
in the theoretical discussion.   
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Fig. 6 shows the model planar bolometer and defines the 
notation that we will use.  We have only considered 
bolometers with a square absorbing surface.  It would, 
however, be easy to apply similar techniques to a planar 
bolometer of a different shape.   We denote the side-length of 
the square by p and the wavelength of the radiation by λ.  For 
simplicity we assume the absorber occupies the region of the 
z = 0 plane defined by | x | ≤ p / 2 and | y | ≤ p / 2.   
 
Until now we have considered the response of the bolometer 
to incident plane waves.  However, when modelling an ideal 
planar bolometer it is actually much easier to work in terms 
of its response to the electric field over the plane containing 
it.  We denote this field Ez=0 (r,ω), where r = (x, y) is a point 
lying in the plane z = 0.  In the preceding analysis of the far 
field detector behaviour, the detector was characterised in 
terms of a set of field modes in which it is simultaneously 
sensitive to power.  The same approach can be used to 
characterise its response to fields over the plane.  We assume 
the detector is simultaneously responsive to the power in a 
set of modes of the field over the plane, given by {V (n) 

z=0 (r, 
ω)}.  Further, we assume there is a set of coefficients {β(n)} 
that, like the γ(n), quantify how much the output scales with 
the power in the associated mode.  We can then define a 
function 
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which is the equivalent of the detector response function for 
fields on the plane.  As such it describes the state of spatial 
coherence of the field over the plane to which the bolometer 
is sensitive.  The equivalent of expression (7) for the fields 
over the bolometer plane is 
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where ),,( 210 ωrr=zE  is the cross-spectral density of the 
plane electric field.  An ideal bolometer is sensitive to the 
total power incident over its surface.  This requires the 
detector output be proportional to the intensity of the field 
integrated over the absorber surface, or  
 

∫
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From (16) we see that this requires that ),,( 210 ωrr=zD , be of 
the form 
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where C is a proportionality constant. 
 

The important question now is how the detector response 
function, ),,( 210 ωrr=zD , is related to ),ˆ,ˆ( 21 ωΩΩD .  We 
will present a simple argument for the expected form.  Our 
approach is based on the relationship between the reception 
pattern of a classical aperture antenna and the field over the 
aperture plane to which it is sensitive.  Denoting the 
reception pattern by R( Ω̂ ,ω) as before and the aperture field 
as Rz=0 (r,ω), we have 
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where we have used the notation in Fig. 5.  This result 
follows from the equivalence between the reception pattern 
of a classical and its transmission pattern.  Equation (19) 
simply represents the process of propagating a field from a 
plane to the far field, using standard methods [6].  This raises 
a point, which will be important later.  As (19) is a 
propagation equation, we see that the reception pattern/far-
field sensitivity of the antenna is determined only by the 
component of the aperture field that is able to propagate.  
This is most easily separated out in the angular spectrum 
domain.  The angular spectrum of the aperture field is given 
by 
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Essentially it is the 2D spatial Fourier transform of the field.  
We see that the angular spectrum appears in (19) in a 
rewritten form and that each spatial frequency component 
can be associated with a particular plane wave, the vector 
associated with that component giving the vector amplitude 
of the wave.  The propagating component of the field 
satisfies the following in the angular spectrum domain: 
 

I. | kt | ≤ k.  If | kt | ≥ k the wave associated with a 
spatial component is evanescent.  In (19) this 
filtering is intrinsic to the expression. Since 

Ωk ˆ= k and Ω̂  is a unit vector, | kt | is always 
limited to being less than k.  
 

II. Electromagnetic waves are transverse polarised, so 
only components of the polarisation vector normal 
to the wave direction can propagate.  This 
component can be found by acting on the vector 

with )ˆˆ( ∗− ΩΩI , as in (19). 
 
The first step corresponds to spatially low-pass filtering the 
field, which means the propagating component cannot vary 
on length scales smaller than λ.  We will see the implication 
of this shortly. 
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In our model, we assume the detector response function is 
given by 
 

∑ ∗=
n

nnnD ),ˆ(),ˆ(),ˆ,ˆ( 2
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21 ωωβω ΩVΩVΩΩ , (21) 

where the {V (n) ( Ω̂ ,ω)}  are the set of natural optical modes 
of the detector, {V (n)

z=0 (r,ω)} , transformed according to 
(19).  Essentially, we treat the planar bolometer as a set of 
aperture antennas and assume that the plane wave response of 
the detector can be found simply from the plane wave 
response of these modes.  This seems sensible. Despite the 
similarity of (21) to (5), the transformed natural modes of the 
field on the plane will not necessarily correspond to the far 
field natural modes of the detector.  This is because the 
transformation does not, in general, preserve orthogonality 
and so there is no guarantee the transformed modes will 
satisfy (3), in which case they do not form a valid set of far 
field modes.  To find the far-field modes, (9) must instead be 
solved for the response function constructed from (21).  
Expanding (21) with (20) and using (15) to simplify, we 
obtain 
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which relates the response on the plane to the detector 
response function that we would measure in an experiment.  
We find the detector response function for our ideal 
bolometer by substituting (18) into (22).  This integral has 
already been done by Withington [9] for the purpose of 
modelling the optical behaviour of bolometric focal plane 
imaging arrays.  Withington treats the bolometer as a perfect 
black body absorber, which is essentially what we have done.  
Chuss [10] has developed this work and has considered the 
field patterns on the sky to which a complete telescope is 
sensitive.  Using their results for this integral, we obtain 
finally for the detector response function of the ideal 
bolometer: 
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where we have grouped miscellaneous proportionality 
constants into the factor η(ω).   
 

It was noted earlier that ),,( 210 ωrr=zD describes the state of 
spatial coherence of the field over the plane to which the 
detector is sensitive.  From (18), we hence see that in our 
model we have assumed the coherence length of this field is 
zero over the absorber surface.  However, this picture of the 
coherence length of the reception field is complicated slightly 
when we consider propagating radiation fields.  From (22) 
and the discussion of (20), we see that the far-field behaviour 
of the detector, i.e. its response to propagating radiation, 
depends only on the propagating component of the field 
represented by ),,( 210 ωrr=zD .  This may also be seen by 
considering (16) in the angular spectrum domain for an 
incident field that satisfies the two propagation criteria from 
earlier.  As discussed before, higher order spatial frequencies 
are absent from the propagating component.  For 
monochromatic fields, this limits the smallest scale over 
which the propagating can vary to distances on the order of a 
wavelength, λ.  This is important for partially coherent fields, 
as it means that the coherence length of the propagating 
component cannot be < λ.  This result holds regardless of the 
coherence length of the full field.  Since incoming radiation 
can only interact with the propagating component 
of ),,( 210 ωrr=zD , from the point of reference of the radiation 
the coherence length of the reception field therefore appears 
to be ~λ.  We shall refer to this coherence length as the 
apparent coherence length of the reception field.  This is to 
distinguish it from the actual coherence length of the 
reception field, which is zero in the model.  The actual 
coherence length depends of the physics of the radiation 
absorption process.  The apparent coherent length has 
important implications, which will be seen in the next 
section.   
 
B.  Modal Behaviour of the Model Detector 
 
Equation (9) was solved numerically with the response 
function of (23) to find the natural optical modes of the 
model detector and the associated eigenvalues for several 
different values of the ratio p/λ.  For all values of this ratio, 
the model bolometer was found to be responsive to the same 
set of modes.  This set resembles the spherical vector 
harmonics, but multiplied in each case by an additional factor 
of the cosine of the zenith angle, θ.  As p/λ is varied, what 
changes is the relative responsivity of the model planar 
bolometer to each mode in the set rather then the modes’ 
spatial forms.  In general it was also observed that the 
responsivities vary with p/λ in such a way that the ordering of 
the modes based on associated eigenvalue, γ(n), is preserved. 
 
Fig. 7 illustrates how the response of the detector to each 
mode varies over the range p/λ = 0.25 – 4.0.  For each value 
of p/λ, the thirty-five largest normalised eigenvalues, {γ (n) / Σ 
m γ (m) }, of the response function are plotted in descending 
order.  Although in reality the eigenvalues for each value of 
p/λ are a discrete set, in the plot I have joined the points 
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belonging to a particularly set together with a line.  This is to 
emphasise trends and to make it easier to distinguish between 
different sets.  Remember that the normalised eigenvalues are 
a measure of the relative responsivity of the detector to the 
power in each of the modes.  The higher the responsivity, the 
more the output of the detector depends on the power in the 
associated mode then the other modes.   With this in mind we 
see that for values of p/λ > 1 the detector is equally 
responsive, approximately, to the power in all thirty-five 
modes shown.  Intuitively this is what we would expect from 
an ideal absorber.  It should be sensitive to the total power in 
the field independent of its exact spatial form.  However for 
p/λ < 1 we observe very different behaviour.  As p/λ 
decreases, the relative responsivity to the first three modes 
can be seen to increase while the responsivity to the other 
modes decreases.  By p/λ = 0.25, the ideal bolometer 
essentially responds only to the power in three modes and is 
behaving as a few-mode detector.      
 
This behaviour can be explained in terms of the apparent 
coherence length of the field over its surface that the absorber 
is sensitive to, which was discussed at the end of the previous 
section.  From (18) we would expect this field to have zero 
coherence length.  However, we noted that because of 
propagation effects the reception field that incident radiation 

‘sees’ is actually coherent over spatial scales of at least ~λ, 
independent of the absorption mechanism.  In the limit where 
the absorbing square is smaller then λ the reception field over 
the absorbing surface will therefore be coherent.  As 
mentioned in section II, when the reception field is fully 
coherent the bolometer behaves like an antenna and will be 
single-moded.  The reason we see actually see responsivity to 
three modes in this limit is in the proceeding discussion we 
have ignored the polarisation of the field.  The three 
components of the field remain uncorrelated, so there are 
three such spatially fully-coherent modes possible.  In the 
limit where p/λ >> 1, the field appears spatially incoherent 
on the scale of the absorber and we recover the ideal 
behaviour we had assumed. 
 
Fig. 8 is a plot of the three far-field modes to which the 
detector is sensitive in the limit p/λ << 1.  The details of the 
projection used are also shown in the figure.  Notice that they 
correspond to the reception patterns expected for differently 
orientated electric dipole antennas, allowing for the 
additional zenith angle dependence already noted.  The first 
two modes correspond to dipoles lying in the plane and are 
simply orthogonal polarisation states.  The symmetry of the 
model bolometer in the x and y directions leads us to expect 
the bolometer should be equally responsive to both modes  

 
Fig. 7  Plot showing the normalised eigenvalues, { γ (n) / Σ m γ (m) }, of the detector response function of the model bolometer for different values of  
p/ λ..  For each value of p/ λ, the thirty-five largest normalised eigenvalues are shown. 
 

19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April 2008

336



 

 

 
 

Ω polarisation
vectorx

y
 

 
a) Details of projection used. 
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b) First mode (eigenvalue = 0.175) 
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c) Second mode (eigenvalue = 0.175) 
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d) Third mode (eigenvalue = 0.102) 

 
Fig. 8  The three modes of the incident field in which the bolometer is 
responsive to power at p / λ = 0.25.  Panel (a) shows the detail of the 
projection used when plotting the fields.  The polarisation vector associated 
with a particular direction of illumination is plotted at the point 
corresponding to the projection of the direction vector into the (x, y) plane.  
The polarisation vector is also shown projected into the plane, i.e. the vectors 
in the plot correspond to the x and y components of the polarisation vector in 
the coordinate system of Fig. 4.  Panels (c) to (d) show the field plots.  The 
grey circles indicate 10º increments in zenith angle. 
 
and this is observed.  It is slightly less responsive to the third 
mode, which corresponds to a dipole orientated normally to 
the bolometer plane.  This is because the wave that would 
couple most effectively to it, a wave incident horizontally 
over the plane, is suppressed by the cosine dependence on 
zenith angle.  These plots suggest a simple model for a 
diffraction limited planar absorber, consisting of three 
antennas with reduced responsivity to the dipole normal to 
the absorber. 

 CONCLUSIONS: 
 
We have described a powerful technique for characterising 
and measuring the optical behaviour of bolometric detectors.  
A bolometer’s behaviour is characterised by a quantity called 
the detector response function.  This function essentially 
describes the set of fully-coherent modes in which the 
detector is simultaneously sensitive to power.  We have 
shown that the response function can be determined 
experimentally by illuminating the detector with two 
coherent, phase-locked plane-wave sources operating at the 
same frequency.  If the relative phase of the two waves is 
rotated, the visibility of the fringes at the output of the 
detector can be used to calculate the component of the 
response function for the particular polarisation and 
directions of incidence.  By repeating for all pairs of source 
locations, and polarisation states, the full response function 
can be found. 
 
This characterization process can be applied at any 
wavelength from the sub-millimetre, through the far-infrared 
and into the optical.  The limiting factor is the ability to 
produce coherent, phase-locked, radiation at a particular 
wavelength.  Furthermore, it can be applied independently of 

19th International Symposium on Space Terahertz Technology, Groningen, 28-30 April 2008

337



 

 

the details of the power absorption mechanism, and how 
power is coupled into the detector.  We envisage the 
procedure having uses outside of bolometer characterisation.  
The modes to which the detector is sensitive will depend on, 
for example, correlations and anisotropies in the absorber, 
relaxation processes and solid-state excitations.  They should 
therefore be a source of information about these processes, 
and could be useful in solid-state physics and surface-
physics. 
 
We are intending to use these techniques to investigate planar 
absorbing structures at 195-270GHz, and have described an 
experiment that is currently being constructed.  The 
theoretical models we have created suggest that planar 
absorbers should exhibit a change in behaviour from multi-
mode to few-mode as the dimensions of the absorber fall 
below the wavelength of the radiation, or in situations where 
the absorption mechanism has some intrinsic sold-state 
coherence length, where the dimensions fall below this 
length. We expect to observe this behaviour experimentally. 
 
Finally, in this paper we have only considered the response of 
detectors to fields in different states of spatial coherence.  
The illuminating radiation has been assumed to be stationary.  
In further work we hope to show that it is possible to recover 
the full spatio-temporal state of coherence of the incident 
field to which a detector is sensitive by performing the 

characterization with a pair of sources whose relative 
frequencies can be varied. 
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