Upgrade of the SMART Focal Plane Array Receiver for NANTEN2

U.U. Graf, C.E. Honingh, K. Jacobs, M. Justen, P. Pütz, M. Schultz, S. Wulff, J. Stutzki KOSMA, 1. Physikalisches Institut der Universität zu Köln, Germany

We present the recent upgrade to the KOSMA SMART 2x 8-pixel dual-color focal plane array receiver. The 460–490 GHz channel has been upgraded from 4 to 8 pixels. We use standard tunerless waveguide mixers with corrugated horns and all-Niobium single junction SIS devices. The measured noise temperatures are around 70 K over the RF band for an IF of 3.5–4.5 GHz for all pixels. At the IF the receiver is enhanced with new bias-tees and low noise MMIC amplifiers developed at Caltech.

In the 800–880 GHz channel, devices with NbTiN-SiO₂-Al tuning structures replace older SIS devices with Al-SiO₂-Al tuning microstrip circuits. Their fabrication at KOSMA's nanofabrication facilities utilizes electron beam lithography and chemical-mechanical planarization processing steps developed for the HIFI Band 2 devices. These devices need less local oscillator power, which facilitates the upgrade from 4 to 8 pixels. Measured noise temperatures per pixel are between 250 K and 300 K over the RF band for an IF of 4–8 GHz. In SMART the IF band is 1–2 GHz in order to simultaneously cover the CO 7-6 and the ³P₂-³P₁ Carbon lines at 807 GHz and 809 GHz in the lower and upper sidebands. All noise temperatures are measured with a 13 μm thick Mylar beam splitter, are uncorrected and calculated according to the Callen-Welton formalism.

The receiver is currently being installed at the KOSMA Gornergrat observatory. After a two- month test run, it will be shipped to the NANTEN2 telescope in Chile to be installed as a facility instrument in time for the southern hemisphere winter.