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Abstract— Terahertz Sideband generator (SBG) array on an 

extended Silicon (Si) hemisphere lens has been investigated in 

this paper. High power handling capacity is achieved compared 

with single varactor waveguide design. The SBG array is 

fabricated on a GaAs substrate. The unit cell dimension is 

determined to be 40 m  40 m with considering of only single 

Transverse Electromagnetic (TEM) mode propagation. Schottky 

planar varactor diode parameters have been chosen to match the 

optimized embedding impedance. The simulated diode anode 

diameter is 1 m, and the finger length is 14 m. 

 
Index Terms— Schottky diode frequency converters, lens 

antennas, submillimeter wave devices, submillimeter wave 

generation. 

I. INTRODUCTION 

IDEBAND generators have been investigated for many 

years to produce tunable high frequency signals, that have 

wide applications in scale radar range systems and molecular 

spectroscopy [1]. State-of-the-art performance, more than 55 

W, has been achieved using single whisker-contact diode 

waveguide-based SBG’s at 1.6 THz [2]. To improve the 

robustness and reliability, planar varactor circuit waveguide 

based SBG’s are investigated with an output power of 40 W 

[3]. Nowadays the Far-Infrared (FIR) laser can produce a 

fixed 184 m spectrum line (1.63 THz) with more than 147 

mW power and 118 m line (2.52 THz) with 143 mW, such as 

Coherent SIFIR-50 system [4], which exceeded a single 

varactor SBG power handling capability (approximately 10 

mW at 1.6 THz). However, it is difficult to explore multi-

diode topologies using waveguide-based SBG’s over 1 THz 

due to limited space and assembling challenges. To address 

these problems, an integrated planar array, which is easy to 

assemble and has high power handling capacity, is 

investigated in this paper. This array is placed on a high-

resistivity Si substrate lens, leading to high gain patterns and 

high Gaussian coupling efficiency [5] [6]. The layout of the 
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1.6 THz SBG array assembled on an extended Si substrate 

lens is shown in Fig. 1. A movable mirror acts as a tunable 

backshort to optimize the embedding impedance. The SBG 

array is fed by a coplanar-waveguide (CPW) transmission-line 

(Tline) as shown in Fig. 2. This SBG array contains 16 planar 

Schottky diodes fabricated on a GaAs substrate. The IF 

microwave signal and DC bias are fed into the array through 

the CPW Tline. 

 
Fig. 1.  SBG array assembled on an extended silicon substrate dielectric lens.  

Movable mirror acts as a backshort to tune the embedding impedance.  

 

 
Fig. 2.  The layout of SBG array consisting of 16 elements. CPW Tline is used 

to feed the array. The unit cell dimension is 40 m  40 m. 
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II. SBG DESIGN AND SIMULATION 

SBG using a single varactor diode is first simulated in 

Agilent’s Advanced Design System (ADS) software. An 

equivalent circuit model is shown in Fig. 3. The varactor 

junction is modeled by a junction capacitor Cj, a series resistor 

Rs, a finger inductor Lfg, a finger to pad capacitor Cfp and a 

pad to pad capacitor Cpp. The initial design goal is to 

determine the varactor parameters required to produce a low 

loss and 180° phase shift, which means low SBG conversion 

loss [7]. To achieve the largest phase modulation, the junction 

capacitance is initially set to resonate with the finger 

inductance at the frequency of interest. This results in a short 

circuit and a reflection coefficient phase of 180 degrees. Off-

resonance, the resonance circuit should present as large an 

impedance as possible to approximate an open circuit.  

Furthermore, the SBG embedding impedances from the diode 

junction are simulated for different anode sizes. For 1 m 

diameter anode, the zero bias junction capacitance is estimated 

at 1.6 fF, while the series resistance is approximately 20 . 

The optimized embedding impedance is found to be, 

Zem=46+j100  at 1.6 THz, as shown in Fig. 4. The 

corresponding conversion loss is less than 9 dB. Based on the 

ADS simulated results, the circuit physical parameters are 

obtained and modeled in the Ansoft’s High Frequency 

Structure Simulator (HFSS) software, which will accurately 

take all the parasitic parameters into account [3].  

 

Zem
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Fig. 3. Single planar Schottky varactor SBG equivalent circuit model. The 

varactor is modeled by finger inductance, junction capacitance, series 

resistance and parasitic capacitance  

III. WAVEGUIDE SBG AT 1.6 THZ 

 

Based on the simulation, a waveguide based SBG is designed, 

fabricated and measured. The integrated circuit includes a 

waveguide to microstrip transition, a planar varactor diode and 

a microstrip low pass filter, which is fabricated on a quartz 

substrate. A photograph of an integrated SBG circuit in a 

metal block is shown in Fig. 5. The integrated circuit width is 

50 m, and the thickness is 10 m. The waveguide-to-

microstrip transition is used to couple the LO power into the 

diode channel and sidebands (RF) back into the waveguide. 

The microwave IF signal is applied to pump the diode, while a 

low-pass microstrip filter integrated with the diode is used to 

resonate with the varactor and block the RF signal. After the 

assembling, the conversion loss measurement is conducted 

using one laser setup system. The output of laser beam is split 

into 2 parts. One part is used to pump the receiver mixer as a 

LO source. The other beam provides the RF carrier to the 

SBG. The output sidebands are reflected by a silicon etalon, 

which passes 99 % of the carrier laser power and reflects 80% 

of the sidebands. The sidebands are directed through a beam 

splitter by two mirrors to the mixer as the RF input signal. 

Finally, the mixer IF output is measured by a spectrum 

analyzer, which is the sideband power. After the path losses of 

the receiver system are calibrated, the SBG conversion loss is 

obtained and shown in Fig. 6. 

 

 
Fig. 4. ADS Simulated conversion loss corresponding to different embedding 

impedances for 1 m diameter anode. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Photograph of 1.6 THz integrated SBG circuit mounted in an open 

metal block. The circuit channel width is 60 m. The varactor is pumped by a 

tunable IF microwave signal. The output RF signal will be LO +/- IF. 
 

IV. ARRAY DESIGN 

After the single varactor SBG measurement, the array is 

designed to achieve better power handling capacities. The Si 

lens diameter is first determined by balancing the Gaussicity 
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and directivity [5]. At 1.56 THz, the free space wavelength, 

0, is approximate 0.19 mm. The hemispherical lens radius is 

chosen to be 3 mm, which will give the R/ 0 ratio 15.8, where 

R is the radius of the lens. The extension of the 

hyperhemispherical lens is initially set to be R/n=0.88 mm, 

where n is the index of refraction of the lens, and the Si 

dielectric constant, r, is 11.7. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.  Measured conversion loss of a signal varactor waveguide based 

SBG using a 1.6 THz FIR laser system.  

 

An equivalent unit cell of the array is simulated with HFSS 

as shown in Fig. 7. Electric wall (E-wall) and magnetic wall 

(H-wall) planes are defined based on the array symmetry [8]. 

The two walls along the diode finger are H-walls, while the 

other two walls are E-walls. To avoid the higher order 

waveguide modes, the unit cell dimension must be less than a 

certain value. Based on the HFSS simulation, the unit cell 

dimensions are determined to be 70 m  70 m for quartz 

substrate, while the unit cell dimensions for Si substrate will 

drop to approximately 40 m  40 m. Ansoft’s HFSS is used 

to optimized the diode parameters to match the best 

conversion loss as shown in Fig. 4. The varactor anode 

diameter is determined to be 1 µm, and the finger length is 14 

µm, taking into account practical limitations on diode 

fabrication.  

 

 
Fig. 7. An equivalent unit cell of SBG array using GaAs substrate. A mirror is 

used as a tunable backshort. E-walls are defined at two waveguide walls at the 

end of the diode, while H-walls are the two side waveguide walls parallel 

along diode finger. The array unit cell dimension is 40 m  40 m. 

 

 

 

 

Frequency (THz)

Im
p

e
d

a
n

ce
 (

O
h

m
s)

1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80
Frequency [thz]

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

Im
p

e
d

a
n

c
e
 (

O
h

m
s
)

Ansoft Corporation Ga40Fig16XY Plot 1

Im (Zem)

Re (Zem)

 
Fig. 8.  Simulated embedding impedance of a unit cell. The diode anode 

size is 1 um, and the finger length is 14 m.  

 

The simulated embedding impedance versus frequency is 

shown in Fig. 8. The simulated embedding impedance is 

70+j72 Ohms at 1.56 THz, which is expected to give a 10 dB 

conversion loss. This conversion loss doesn’t account for 

circuit reflection and dielectric losses. Furthermore, the 

Gaussian beam coupling is calculated. The Gaussian laser 

beam is coupled into the array by an off-axis parabolic mirror 

with focus length 60 mm. To optimize coupling to the beam, 

the array is populated with 4  4 elements, and the array size 

will be 0.16 mm  0.16 mm. The distance between the laser 

beam waist and the parabolic mirror is determined to 1.7 m, 

while the distance from the mirror to the Si lens is 61 mm.  

V. CONCLUSION 

A 1.6 THz SBG array with 16 elements on an extended 

silicon dielectric lens is investigated. Planar varactor diode 

parameters have been optimized to match the impedance, 

giving by a conversion loss contour map. The simulated SBG 

conversion loss is approximate 10 dB without considering of 

reflection and dielectric losses.    
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