20m International Symposium on Space Terahertz Technology, Charlottesville, 20-22 April 2009

Diamond Heat-Spreaders for Submillimeter-
Wave GaAs Schottky Diode Frequency
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Abstract—We have attached CVD diamond film as a heat-
spreader to our existing 250 GHz GaAs Schottky diode frequency
tripler chip in o rder to improve its power handling capability.
Using this first generation device, we were able to produce 40 mW
at 240 GHz from a single frequency tripler with 350 mW input
power at room temperature. We have also run finite-element
thermal simulations and seen that the 30 pm thick diamond film
dropped the temperature of the anodes by about 200° C. This
break-through in thermal management increases the output
power of frequency multipliers by nearly 100%.

Index Terms—Diamond, Heat-
Spreader, THz source.

Frequency multipliers,

I. INTRODUCTION

T HE planar GaAs Schottky diode frequency multiplier
chain is a very good candidate for compact reliable tunable

terahertz sources due to low mass, wide electronic
tunability, narrow line-width, low noise, and room temperature
operation [1]. However, the output power of frequency
multiplier chains is relatively low compared to recent quantum
cascade laser (QCL) results in the 2-3 THz band [2]. Frequency
multipliers are cascaded in chains to create terahertz sources.
Thus, in order to generate high power at the output in the 2-
3 THz range, we need to have high driving power in the first
stage of the chain, typically in the 200 to 400 GHz range. In
order to increase the power handling capability and output
power, the doping concentration of the Schottky contact can be
adjusted to increase the breakdown voltage, or the number of
anodes per multiplier chip can be increased [3]. However, due
to thermal issues the most promising technique to increase
output power has been to power-combine two or more parallel
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stages. For example, the power available at 300 GHz can be
doubled by using a 300 GHz dual-chip power combiner [4].
Currently, up to 800 mW of continuous-wave (CW) tunable
W-band power is available by four-way power combining
MMIC amplifier chips at W-band [5]. However, current-
generation submillimeter-wave frequency multipliers cannot
handle the input power of 800 mW due to thermal management
problems. Therefore, we propose to use a diamond film as a
heat-spreader in order to remove the heat more efficiently,
resulting in increased power handling and output power.
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Figure 1. Simplified schematic view (not to scale). (a) Heat laterally
transfers through GaAs membrane (thermal conductivity=46 W/m-K)
to heat sink. (b) Heat laterally transfers through the CVD diamond
film (thermal conductivity = 1000-1200 W/m-K) to heat sink.

II. THERMAL ANALYSIS

Figure 1 (a) shows the nominal schematic view of the
250 GHz tripler as placed in the split waveguide block. The
heat generated at the anode transfers through a few-micrometer
thick GaAs membrane and gold beamlead to the waveguide
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block, which is a heat sink. The thermal conductivity of GaAs
is approximately 46 W/m-K and this thermal conductivity
value decreases as the temperature increases. Figure 1 (b)
shows the proposed schematic view of the 250 GHz tripler
with a diamond film bonded to the backside of the GaAs
substrate to remove the heat more efficiently. The
polycrystalline diamond film works as a heat spreader which
removes the heat by thermal conduction to a heat sink. In this
structure, the heat goes to the diamond film and then transfers
through the diamond film laterally and goes back to the gold
beamlead and waveguide block which is a heat sink. The
thermal conductivity of CVD diamond is 1000-1200 W/m-K
and is 20 times greater than GaAs (46 W/m-K) and three times
higher than silver (430 W/m-K). Since the thermal resistance of
the chip is about three times lower with diamond than without,
it reduces the maximum temperature rise by a similar factor.

III. MICROFABRICATION

A. Diamond Etching Process

Polycrystalline diamond deposited by hot-filament chemical
vapor deposition (CVD) has been selected as the material for
providing thermal management due to the high thermal
conductivity (1000-1200 W/m-K). It is an electrical insulator
(resistivity = 10" Q/cm) and has a moderate relative dielectric
constant of 5.7. Because it is the hardest material known and it
is chemically inert, it is extremely difficult to pattern the
diamond, especially thick films. In order to etch the thick
diamond film, the RF power, the gas flow, chamber pressure,
and the bias voltage have been investigated in inductively
coupled plasma (ICP) RIE. An etch rate of 550 nm/min has
been used.

B. Microfabrication

JPL’s Monolithic Membrane-Diode (MOMeD) process that
results in extremely low parasitic Schottky diode chips has
been discussed previously [6]. The frontside processing forms
the Schottky diode, RF components and on-chip capacitors.
The backside processing is used to remove the substrate and
enable chips that are made on a very thin layer of GaAs to
improve RF tuning. = We have modified the backside
processing sequence to allow us to mount a diamond film to
the membrane. The diamond is patterned using an Inductively
Coupled Plasma Reactive Ion Etching (ICP-RIE) system. The
patterning of the diamond allows us to shape the diamond
substrate, keeping the beamleads free for mounting and DC
contacts. Figure 2 shows the front-side view of the 250 GHz
tripler. The front-side view is the same as the tripler without
the diamond. However, the back-side has the bonded diamond
film for removing the heat efficiently.

IV. MEASURED RESULTS

Figure 3 shows the measured 250 GHz tripler’s output
power and conversion efficiency as a function of the input
power at 238.8 GHz. At 200 mW input power, the efficiency

(b)

Figure 2. (a) Front view of the 250 GHz tripler when mounted in one
half of the split waveguide block. (b) View of the 250 GHz tripler
chip showing the diamond film.

was approximately 14 % for one with the diamond, and 11%
for one without diamond. However, above 200 mW of the
input power, the efficiency drops more slowly for the tripler
with the diamond compared to the tripler without the diamond.
The output power of the tripler without diamond peaks at 22
mW for the input power of 200 mW and thereafter starts to
drop rapidly and fails at the input power of 240 mW. However,
for the tripler with the diamond heat-spreader, the output
power continues to climb as the input power increases. An
output power of 40 mW at 350 mW input has been achieved
from a single chip without any sign of degradation. In
addition, reduction of operation temperature of Schottky diodes
can increase the reliability.

Figure 4 shows the output power versus output frequency
plot of the 250 GHz tripler for a chip with diamond and a chip
without diamond. A frequency sweep was performed using flat
input power levels at 100 mW, 200 mW, and 300 mW. The
tripler without the diamond suffered a catastrophic failure at
about 250 mW input power, and therefore no data was obtained
for this chip at 300 mW. As the plot shows, adding the
diamond layer improves the output power without degrading
the bandwidth.
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Figure 3. Output power and efficiency versus input power measured at 240 GHz for triplers operated at room temperature both
with and without diamond heat-spreaders.
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Figure 7. Output power versus output frequency for the 250 GHz tripler at room temperature. Chip without the diamond heat
spreader suffered a catastrophic failure at 240 mW input.
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V. CONCLUSION

This superior thermal management achieved with diamond
provides a 100% increase in power handling capability. For
example, we have achieved 40 mW output power at 240 GHz
from a frequency tripler with 350 mW input power, while
identical triplers without diamond suffered catastrophic failure
at 250 mW input power. Optimizing the Schottky diode chips
and waveguide circuits for the presence of the diamond
substrate is expected to further increase the achievable output
power. This increase in output power in the 250-350 GHz
band is expected to increase the usable range of Schottky diode
frequency multiplier chains to beyond 3 THz.
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