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Abstract— GREAT, the German REceiver for Astronomy at 

THz frequencies, has successfully passed its pre-shipment accep-

tance review conducted by DLR and NASA on December 4-5, 

2008. Shipment to DAOF/Palmdale, home of the SOFIA observa-

tory, has been released; airworthiness was stated by NASA. 

Since, due to schedule slips on the SOFIA project level, first 

science flights with GREAT were delayed to mid 2010.  

Here we present GREAT’s short science flight configuration: 

two heterodyne channels will be operated simultaneously in the 

frequency ranges of 1.25-1.50 and 1.82-1.91 THz, respectively, 

driven by solid-state type local oscillator systems, and supported 

by a wide suite of back-ends. The receiver was extensively tested 

for about 6 month in the MPIfR labs, showing performances 

compliant with specifications.  

This short science configuration will be available to the interested 

SOFIA user communities in collaboration with the GREAT PI 

team during SOFIA’s upcoming Basic Science flights.  

 
Index Terms— airborne astronomy; heterodyne receiver; high 

resolution spectroscopy; SOFIA 

 

I. INTRODUCTION 

REAT
[1][2]

 is a highly modular principal investigator hete-

rodyne instrument designed for use aboard the SOFIA
[3]
  

airborne observatory. The instrument is developed and funded 

by a consortium of four German research institutions.  

Main goal of the design was to provide best possible perfor-

mance within the boundaries drawn by the observatory and the 

airworthiness requirements. 

In total four independent heterodyne channels are under 

development for the instrument. Two out of these can be 

operated simultaneously during one observing flight. The 

channels being developed so far target at, e.g., high-J CO-

transitions, ionized carbon (at ~1.9 THz), deuterated molecular 

hydrogen HD (~2.7 THz), and atomic oxygen (~4.7 THz).  

For the first flight configuration GREAT will be equipped 

with the both so called low-frequency channels L#1 and L#2. 

L#1 operates from 1.25 to 1.52 THz while L#2 ranges from 

1.82 to 1.92 THz. 
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II. SYSTEM DESCRIPTION 

GREAT consists of a main structure housing an electronics 

rack, two cryostat mounts, two optics compartments, two LO-

mounts and a calibration unit. The telescope signal is either 

split by polarization or by frequency (dichroic mirror) to feed 

two independent heterodyne receiver channels for simulta-

neous operation. The cryostats are liquid Nitrogen and liquid 

Helium cooled wet dewars providing the 4.2 K operation 

temperature of the mixer-devices. The hold time is well above 

20 hrs, which is far more than the expected flight duration of 

SOFIA (< 14 hrs). The calibration unit consists of two black-

body radiators, one placed in a small liquid Nitrogen cooled 

dewar and one at ambient temperature. Switching between the 

two loads and the sky is done by a remote controlled mirror. 

As heterodyne mixing elements in both first flight channels 

and in the 2.7 THz channel HEB-mixers made by KOSMA are 

used
[4]
. They show excellent noise performance and stabilities. 

Currently their IF-bandwidth is limited to about 600 MHz (by 

the isolator), but we hope to overcome this limitation with the 

next generation of KOSMA mixers expected to be operational 

within this year. The 4.7 THz channel will be equipped with 

HEB-mixers developed by DLR-PF
[5]
. 

The optics
[6]
 of each channel is placed on an optical bench, 

which can be reproducibly mounted to the main structures 

optics compartment. This, together with easily exchangeable 

cryostats and LO-systems makes possible to reconfigure the 

system even between two flights of a SOFIA flight series, e.g. 

to change the RF-frequency channel. 

The frontend is fully remote controllable via Ethernet. A 

VME-type computer provides all necessary control signals. In 

addition the system can be operated fully manual even when 

the computer is switched off. Together with a partly redundant 

electronics system this improves reliability of the system 

during flight, even in case of a device or software malfunction.   

GREAT uses a two-stage IF-system which can provide 

signals for three different backend-types. The simultaneous 

use of the 8-channel AAOS
[7]
 system, two CTSs

[8]
, and a two 

channel fast Fourier transform spectrometer
[9]
 is possible. The 

array-AOS, with the second stage of the IF-processor provides 

a total bandwidth of 4 GHz at 1 MHz spectral resolution per 

frequency channel. The CTS can simultaneously analyze a 220 

MHz wide part of the band at approx. 45 kHz resolution. The 

free to configure FFTS-chains offers up to 1.8 GHz instanta-

neous bandwidth at 255 kHz resolution each. A higher resolu-

tion mode with correspondingly lower bandwidth can easily 

be configured by software (750 MHz with 53 kHz). The FFTS 

operates with the first IF-stage only, reducing complexity at 

the backend-side. 
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III. PERFORMANCE 

During extensive AIV tests prior to the pre-shipment review 

both low-frequency channels have been characterized in 

detail. All minor problems that appear when operating new 

technologies for the first time were addressed and solved. 

Table 1 summarizes the basic performance numbers. 

IV. CONCLUSION 

GREAT meets all design requirements and is ready for 

shipment. All auxiliary equipment, as the transportation cart 

and shipping boxes, is ready to go. Ongoing development is 

concentrated to improve the IF-bandwidth of the both low-

frequency HEB channels and to complete the mid-frequency 

channel at 2.7 THz within this year. 
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Table 1.  GREAT performance data as measured during the lab-tests.   

 

Fig. 1.  GREAT in its early science flight configuration, equipped with channels L#1 and the L#2. All components are flight 
hardware including the airworthy wiring.   
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Channel LO-coverage 
(using VDI solid-state 
chains) 
 

spectr. Allan-
variance minimum 
time  
 

DSB noise-temperature  
 

beam-shape  
 

L#1: 
 1.4 THz 

Chain 1:   1.25 – 1.40 THz 
                 (with a gap at 1.28 THz) 
 

Chain 2:   1.42 – 1.52 THz  
 

>100 s  
TP Allan times are in the 
order of >30 s. 

< 1800K 
(measured with wrong leveling of 
the IF) 

expected waist-position and 
opening angle 

L#2: 
 1.9 THz 

1.81 – 1.905THz 
(with a gap at 1.88 THz) 
 

>90 s  
TP Allan times are in the 
order of >15 s. 

< 1300K 
best measured value at 1821GHz 
was 1150K. 

expected waist-position and 
opening angle 
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