Implementing a Modular 650 GHz Sideband-Separating Mixer

R. Hesper^{*}, A.M. Baryshev[†], G. Gerlofsma^{*}, F.P. Mena[§], T. Zijlstra[‡] and M.C. Spaans^{*}

* NOVA/Kapteyn Astronomical Institute, University of Groningen, The Netherlands Email: r.hesper@sron.nl

[†] SRON Netherlands Institute for Space Research, Groningen, The Netherlands

[‡] Kavli Institute of Nanoscience, Delft University of Technology, The Netherlands

§ Electrical Engineering Department, Universidad de Chile, Santiago, Chile

Abstract

The ALMA band 9 receiver cartridge (600-720 GHz), which currently is in full production, features two single-ended (dual sideband) SIS mixers in orthogonal polarizations. In the case of spectral line observations, the integration time to reach a certain desired signal-to-noise level can be reduced by about a factor of two by rejecting the unused sideband.

A design study for a modular sideband-separating (2SB) mixer, suitable for retrofitting with minimal impact into the existing band 9 cartridges, has been presented on this conference last year. The design builds on the monolithic proof-of-concept 2SB mixer that was developed at SRON over several years.

Here, we present the first implementation of the modular 2SB mixer concept. A mechanical prototype (omitting the RF structure) was manufactured, and several improvements were fed back into the design. After that, a full prototype was produced, using micro-milling for the RF structures. We hope to present the first noise temperature and sideband separation results of the new mixer.