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Abstract—High-speed YBa2Cu3O7-d detectors were developed 

to monitor terahertz picosecond pulses in the time domain. High-

TC superconducting thin-film YBa2Cu3O7-δδδδ microbridges with 

critical temperatures of TC = 85 K were embedded into a planar 

log-spiral antenna to couple the broadband terahertz radiation 

(0.1 – 2 THz). The YBa2Cu3O7-δδδδ detectors were installed in a 

liquid nitrogen cryostat equipped with 18 GHz effective 

bandwidth readout electronics. THz pulses generated at the 

electron storage ring UVSOR-II have been resolved with a 

temporal resolution of 30 ps (full width at half maximum) limited 

by the readout electronics bandwidth.  

 

Index Terms—High-temperature superconductor YBa2Cu3O7-δδδδ, 

thin-film THz detectors, picosecond THz pulses, coherent 

synchrotron radiation. 
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I. INTRODUCTION 

N recent years the generation of ultra-short and high-

power THz pulses made significant progress. In electron 

storage rings the emission of broadband coherent synchrotron 

radiation (CSR) by accelerated electrons deflected by bending 

magnets is used to generate picosecond THz pulses [1], [2]. 

However, to optimize the generation of CSR THz radiation, a 

detailed understanding of accelerator physics e.g. beam 

dynamic effects is required. For the analysis of the emitted 

ultra-short pulses very fast detectors with a time resolution in 

the single picosecond range are required.  

Standard detector technologies currently in use at electron 

storage rings are e.g. InSb bolometers [3] or Schottky diodes 

[4]. However, with response times in the microsecond range 

InSb bolometers [3] are lacking of speed. Whereas Schottky 

diodes can reach response times in the picosecond range, these 

devices show small responsivity values and are non-linear 

resulting in a small dynamic range [5].  

The high-temperature superconductor YBa2Cu3O7-δ 

(YBCO) is a promising candidate for ultra-fast detectors. 

Electron energy relaxation times of only a few picoseconds 

were measured by electro-optical sampling in the optical 

frequency range which can be explained by a very strong 

electron-phonon coupling in YBCO thin films [6], [7].  

We have developed a fabrication process for thin-film 

YBCO THz detectors and demonstrated a dynamic range of 

more than 30 dB for our YBCO microbridges [8].  

In this paper we describe a high-speed YBCO direct 

detection system with broadband high-frequency readout with 

an effective bandwidth of 18 GHz (Section II). Direct 

measurements in the time domain revealed a system temporal 

resolution of 30 ps (FWHM) which was limited by the 

bandwidth of the oscilloscopes. Results on the detection of 

pulsed CSR THz radiation emitted by the electron storage ring 

UVSOR-II in Japan are discussed in Section III. 

 

II. YBCO DETECTION SYSTEM 

The YBCO thin film detector chip (3 mm x 3 mm) was 

mounted to the rear side of a silicon lens. The lens was 
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embedded in a copper detector block to ensure good thermal 

coupling to the cryostat cold plate. The critical 

superconducting temperature of the fabricated detector 

(TC ≈ 85 K) allows us to integrate the detector into a liquid 

nitrogen bath cryostat. The detector block including bonds, 

readout lines and connectors was simulated with CST 

Microwave Studio® and revealed a -3 dB roll-off frequency of 

30 GHz. The focused synchrotron THz radiation entered the 

cryostat through a polyethylene window.  

The detector block was connected by a 65 GHz broadband 

semi-rigid cable to the room-temperature bias-tee (50 kHz – 

65 GHz). If required, a room-temperature amplifier (200 kHz 

– 55 GHz) was used before reading out the detector signal in 

the time domain via a real-time oscilloscope. For our 

measurements discussed in Section III a 30 GHz LeCroy 

(LabMaster 9 Zi-A) real-time oscilloscope was used. The 

scheme of the complete experimental setup is displayed in Fig. 

1. 

The effective readout bandwidth for our detection system 

can be calculated according to [10] as 
2/1
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−
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= ∑

i

ieff ff ,              (1) 

where fi are the electronic bandwidths of the single 

components. For our detection system including the room-

temperature amplifier the effective bandwidth amounts to 

feff ≈ 18 GHz which corresponds to a time resolution of ≈ 20 ps 

(full width at half maximum (FWHM)). Due to dispersion and 

reflections along the readout chain a slightly larger time 

constant is expected. 

III. MEASUREMENTS 

UVSOR-II, the electron storage ring of the Institute for 

Molecular Science in Okazaki, Japan, is operated in the beam 

energy range between 600 and 750 MeV. The radio frequency 

and the revolution frequency of the ring are 90.1 and 5.6 MHz, 

respectively. At UVSOR-II, CSR is emitted not only from 

short bunches but also from electron bunches with longitudinal 

microstructure of radiation wavelength scale. Laser bunch 

slicing is a technique for creating sub-millimeter dip structure 

on electron bunches using femtosecond laser pulses [11], [12]. 

In Fig. 2 a single shot of the detector response to CSR 

pulses generated by laser slicing at a laser modulation 

frequency of 0.15 THz is displayed. The 7 ps wide THz pulses 

(FWHM) resulted in pulses on the oscilloscope of 30 ps which 

was the limit of the readout electronics. These very fast 

detector responses are explained in the framework of the 

vortex flow model which was recently presented by the authors 

[9]. 

IV. CONCLUSION 

We have developed ultrafast YBCO detectors for 

picosecond THz pulses which are operated at liquid nitrogen 

temperatures. The single THz pulses from UVSOR-II were 

detected with a temporal resolution of 30 ps (FWHM) 

allowing for the study of beam dynamic effects.  
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Fig. 1.  Scheme of the experimental setup of the direct YBCO detection 

system to monitor picosecond THz pulses in the time domain. The room 

temperature amplifier is optional. 
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Fig. 2.  Laser induced CSR pulse measured with the YBCO detection system 

at UVSOR-II. The full width at half maximum of 30 ps was limited by the 

bandwidth of the readout electronics.  
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