THE YUAN-TSEH LEE ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY Ming-Tang Chen¹, Chao-Te Li, Yuh-Jing Hwang¹, Homin Jiang¹, Chih-Chiang Han¹, Yau-De Huang¹, Michael Kesteven³, Derek Kubo¹, Pierre Martin-Cocher¹, Philippe Raffin¹, Warwick Wilson³, Paul T. P. Ho^{1,4}, Chih-Wei Huang², Patrick Koch¹, Yu-Wei Liao¹, Kai-Yang Lin1,¹, Guo-Chin Liu⁵, Hiroaki Nishioka¹, Keiichi Umetsu¹, Fu-Cheng Wang², and Jiun-Huei Proty Wu² ¹ Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan ² National Taiwan University, Taipei 106, Taiwan ³ Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710, Australia ⁴ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cam- bridge, MA 02138, USA ⁵ Tamkang University, Tamsui, Taipei County, Taiwan 251 Contact: mchen@asiaa.sinica.edu.tw, phone +886-2-2366 5348 Abstract— The Yuan Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is a forefront interferometric array for research in cosmology. The Array is consisted of thirteen antennas, each equipped with a cryogenic receiver operating in the atmospheric window at 86-104 GHz, and with full polarization capabilities. The dish size of 1.2 meter is to sample large-scale structures (20), while interferometry provided mode st resolutions (2). A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. Monolithic millimeter-wave integrated circuit technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. It targets specifically the distribution of high-redshift clusters of galaxies via the Sunyaev-Zeldovich Effect (SZE), as a means to probe the primordial and early structure of the universe. AMiBA is sited on Mauna Loa at an elevation of 3,400m in Hawaii. The construction of AMiBA includes a novel hexapod mount, a carbon fiber platform, carbon fiber reflectors, MMIC receivers, a broadband correlator, numerous electronics, a retractable cover, site infrastructures, and software development. The AMiBA has deployed the initial 7-element interferometer to Hawaii in 2005, and subsequently expanded to the present 13-element configuration in Oct 2009. Full science operations have begun in early 2010. This paper will review the development of the telescope and its observation progress.