Development of antenna-coupled KIDs for large cameras

L. Ferrari^{1*}, A. M. Baryshev^{1,2}, J. J. A. Baselmans³, A. Endo⁴, R. Güsten⁵, S. Heyminck⁵, S. Hochgürtel⁵, B. Klein⁵, Y.J.Y. Lankwarden³, and S.J.C. Yates¹

1 SRON Space Research of Netherlands* Groningen, 9747 AD, The Netherlands
2 Kapteyn Astronomical Institute, Groningen, 9747 AD, The Netherlands
3 SRON Space Research of Netherlands, Utrecht, 3584 CA, The Netherlands
4 Delft University of Technology, Delft, 2628 CJ, The Netherlands
5 Max Planck Institute for Radio Astronomy, Bonn, 53121, Germany
* Contact: lorenza@sron.nl, phone +31-50-3638321

Abstract— Large-scale arrays of Microwave Kinetic Inductance Detectors (MKIDs) are attractive detector candidates for imaging instruments in sub millimeter-wave telescopes such as APEX. We are developing antenna-coupled KIDs. Our detector design employs a quarter-wave coplanar waveguide (CPW) resonator. One end of the resonator is coupled via a capacitor to the readout transmission line and the other end is shorted to ground. A twin-slot antenna transfers incident on the shorted end. The radiation is concentrated and focused onto antenna by means of a lens glued to the back-side of the KID sample. We present the last developments of the detector design and recent results of the detector performance