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Abstract—In order to achieve low Noise-Equivalent-Powers (NEP 
< 1 aW Hz-1/2) Transition Edge Sensors (TES) require high levels 
of thermal isolation between the superconducting bilayer and the 
heat bath. We propose that short micro-machined acoustic 
interferometers can be used for low-noise thermal isolation, 
avoiding many of the difficulties inherent in conventional, long-
legged TES designs. In this paper, we present a detailed elastic 
wave model of interferometric phononic legs, and demonstrate 
the successful fabrication of TESs that are thermally isolated by 
interferometric structures. 

I. INTRODUCTION 
Low-noise Transition Edge Sensors (TES) require very low 

thermal conductances between the superconducting bilayer 
and heat bath. To date, the lowest conductances have been 
achieved by using long, narrow, amorphous SixNy support 
legs, and relying on diffusive transport to bring about a 1/L 
dependence, where L is the length of the support leg [1,2,3,4]. 
In fact, the conductance scales as 1/N, where N is the number 
of acoustic attenuation lengths along the physical length of the 
structure. To achieve ultra-low Noise Equivalent Powers 
(NEPs) requires long, narrow legs, which brings numerous 
difficulties: (i) It is not possible to densely pack pixels into 
imaging arrays, and so light pipes are needed, but it is 
extremely difficult to produce long, high optical efficiency 
light-pipes at wavelengths of tens of microns. (ii) The legs 
become frail, yields are potentially reduced, and there is 
concern that the legs may not survive the launch of a space 
instrument. (iii) Several groups report conductance variations 
of around ±15% between nominally identical devices on the 
same wafer, and we believe that this may be due to resonant 
phonon localization caused by disorder. The disorder that is 
responsible for the 1/L dependence in the first instance, leads 
to resonant phonon trapping when the cross section of the 
microbridge is made exceedingly small. (iv) The heat capacity 
of the legs can have a marked effect on the electro-thermal 
characteristics of a TES, and therefore low-heat-capacity legs 
are beneficial. Various efforts have been made towards 
controlling conductances by alternative means. Some have 
included roughening the surface of crystalline Si [5], but most 
have been based on large-scale patterning [6,7,8], with varying 
degrees of predictability. In this paper we propose that micro-
machined elastic interferometers can be used to achieve high 
levels of thermal isolation, whilst avoiding many of the 
difficulties inherent in the conventional diffusive approach. 

Initially we considered patterning step discontinuities into 
microbridges so as to produce a form of acoustic Fabry-Perot 
filter. However, the dominant phonon wavelengths are of 
order 1 μm, and so any discontinuities must be abrupt on scale 
sizes of say 0.2 μm. It is not possible to manufacture step 
changes in width with edges that are abrupt on scale sizes of 
significantly less than 1 μm using optical lithography. Other 
techniques such as Focused Ion Beam (FIB) milling are 
available, but we do not see how it would be possible to 
produce a large number of TES pixels, say in an imaging 
array, having near-identical characteristics. We thus conclude 
that Mach-Zehnder-like interferometers are preferable.  

In previous work [9] we demonstrated a range of TESs 
where thermal isolation was limited not by diffusive 
scattering, but by using extremely narrow legs, thus limiting 
the number of elastic modes present. We also ensured ballistic 
transport by making the legs very short (< 4 μm). Crucially, it 
was possible to calculate the heat flow, the temperature 
dependence of the thermal conductance, and the NEP of a 
number of devices simply from knowing the bulk elastic 
constants of the supporting dielectric [9]. This work showed 
that we were able to manufacture and operate TESs having 
tiny leg geometries, that the thermal exchange with the bath 
was dominated by ballistic phonon transport at typical 
operating temperatures of ~ 100 mK, and that conductance 
variation due to localization was essentially eliminated. We 
also showed that for small cross-sections (∼ 700 nm x 200 
nm) the effective number of phonon modes available along 
each leg is close to the theoretical lower limit of 4. The 
devices had thermal characteristics that were entirely 
accounted for by ballistic elastic-mode considerations.   

As the cross-section of a microbridge is reduced, the 
number of propagating modes eventually limits at 4 
(longitudinal, in-plane flexure, out-of-plane flexure, and 
torsion) and our devices were close to this limit, 
corresponding to a limiting NEP of 1 aW Hz-1/2. Phonon NEPs 
of this order are more than sufficient for use in low-noise 
CMB ground-based and space-borne polarimeters. The next 
generation of cooled-aperture far-infrared space telescopes, 
however, require even lower NEPs. Ideally one would like to 
reduce the conductance by at least an order of magnitude, 
whilst maintaining the many benefits of the ballistic, few-
mode approach. 
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In order to provide a predictive tool for modelling the 
behavior of patterned structures, we have developed a 
travelling elastic-wave model of thermal transport, and applied 
it to simulating the behavior of micromachined elastic 
interferometers. In order to know the limits of what can be 
done, it is necessary to know the elastic and inelastic 
attenuation lengths. To our knowledge, there is currently no 
literature on the precise value of the low-temperature acoustic 
attenuation length in thin-film amorphous Si or SixNy, which 
we conclude from our previous results must be greater than 4 
μm. There is also concern that the value will depend on the 
stoichiometry and the presence of impurities, which are 
particularly difficult to control in the case of SixNy. We know 
that legs that are tens of microns long show a 1/L dependence, 
which indicates that there must be a scattering mechanism 
operating on this scale size.  

A central part of our recent work has been to generate a 
model that can take into account ballistic, diffusive and 
localized transport simultaneously, such that it is possible to 
predict the behavior of structures operating in the regime 
where the transport crosses over from being ballistic to 
diffusive. In this paper we present, for the first time, the 
application of the technique to elastic interferometers. We 
discuss some results from our elastic-wave modelling, and 
show how this model gives physically meaningful predictions 
in the ballistic/diffusive regime. It limits to ballistic 
interference when the interferometer is much shorter than the 
attenuation length, and the 1/L dependence of two parallel 
diffusive paths when the interferometer is much longer than 
the attenuation length. We then go on to show how we 
successfully manufactured phononic filters in the support legs 
of TESs. 

II. THEORY 

A. Directed-Flow Graph  
 
The directed-flow graph of a lossless, reciprocal, Mach-

Zehnder-like interferometer is shown in Fig. 1.  The two 

power-dividing junctions (one on the left and one on the right) 
are assumed (although this can be relaxed) to be three-way 
symmetric. We also assume (although this can also be easily 
relaxed) that the power dividers have no spatial extent. This 
simplifying assumption means that differential phase changes 
occur only along the lengths of the two connecting arms.  

The physical lengths of the waveguides in each of the two 
arms, η, are given by, lη, and the transmission coefficients of 
these channels are simply given by the complex exponential 
factors shown in Fig. 1, where q is the wavenumber of the 
propagating elastic mode. Every port, or equivalently every 
plane, has two nodes. The ingoing complex wave-amplitudes 
at a plane are denoted by a vector a, and the outgoing complex 
wave-amplitudes are denoted by a vector b. These are vectors 
to allow for multiple elastic modes to be accommodated. In 
the case of single-mode operation, or where there is no 
intermodal scattering, a and b become scalars. In the case of 
the couplers, unprimed values correspond to the left junction 
and primed values to the right junction. Both power dividers 
have three ports, denoted by the subscripted numbers 1, 2 and 
3. The transmission factors between every node within a 
divider are labeled by the scattering matrix parameters, Sij, 
which denote the transmission coefficients between node i and 
node j. In the case of multiple elastic modes these are block 
matrices. In the right divider, the subscripts are primed. 
Because the dividers are both the same in our case, the primed 
scattering parameters are identical to their unprimed 
counterparts. Values of S for which both subscripted indices 
are equal, Sii, denote the reflection coefficient at port i. It can 
be shown that for a lossless, reciprocal, three-way symmetric 
junction Sii = -1/3 and Sij = 2/3, for all i,j.   

B. Calculating the  Interferometer Response 
 
For any directed-flow graph we can create a vector of all 

complex wave amplitudes v, where v = [a1,…, aN, b1, …,  bN]T, 
and where N is the total number of ports. We wish to solve for 
V =  vv†  given some power input anywhere in the flow 
network. V is a matrix of the cross-correlations between the 

Fig 1  Directed-flow graph of an interferometer. 
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wave-amplitudes at the nodes, and the leading diagonal of V 
gives the power flow at each node. To solve for V, we find the 
transformation matrix, P, such that v → Pv. P projects the 
wave-amplitude at each node onto a space of its nearest 
dependencies. Once we have found P, we use the formalism 
derived by Withington [10] to calculate V for some frequency-
dependent blackbody thermal flux at nodes a1 and a’

1. The net 
thermal flux across any plane, i, is given by Σ| a!a!! −
b!b!

! |, where the sum corresponds to a sum over elastic 
modes. 

C. Absorption and Re-emission 
 
Sections A and B describe a complete model for a lossless 

interferometer. However, in the diffusive regime, a wave 
propagating along a length of microbridge in Fig. 1 will be 
absorbed and re-emitted, creating a temperature gradient 
between the power dividers. To account for absorption and 
phase-incoherent re-emission, we re-construct each arm in the 
directed-flow graph to include a large number of cells 
(typically 50). Each cell is essentially isothermal, and so a 
number of cells is needed to smoothly describe the 
temperature gradient. We illustrate a waveguide of this kind in 
Fig. 2, in which α and β denote wave-amplitudes propagating 
in opposing directions at a plane. The transmission coefficient 
between pairs of neighbouring planes is 𝑔  exp −𝑖𝑞𝑙!/𝑁 , 
where N is the number of cells and 𝑔 is a unitless transmission 
factor < 1. The inclusion of loss simply results in ‘lossy 
ballistic’ behaviour, it does not lead to diffusive transport. To 
accommodate diffusion it is necessary to introduce pair-
correlated sources along the whole length of the structure to 
model the re-radiation of phase incoherent waves by the losses 
in each cell. In the steady state, the total net fluxes at all (N+1) 
planes are equal. We then solve for the temperature each cell 
must have in order to reradiate a thermal flux that maintains 
this steady state condition. For a complete description of how 
this is done refer to Withington [10].  

 

 
Fig. 2  A waveguide with N+1 planes. 

 
When our thermal modelling technique is applied to an 
interferometer, it can be shown that the number of unknowns 
is equal to the number of equations, and therefore that the 
formulation of the problem is well conditioned. Also, in 
practice, we find that the technique converges rapidly and 
reliably even when a large number of cells is used.  

III. SIMULATION RESULTS 

D. Fabry-Perot Response and Resonant Interference 
 

 
Fig 3  Net power spectral density, PSD, against phonon frequency, ν, for two 

blackbodies exchanging power via no interferometer (black line, labelled BB), 
via an interferometer with equal 𝑙! , where l1 = l2 = 2 μm (green line, labelled 
FP) and an interferometer with non-equal 𝑙! , where l1 =2 μm and  l2 = 4 μm 

(blue area plot, labelled MZ). Hot and cold terminations are at 100 mK and 60 
mK, respectively. 

To illustrate the response of an elastic-wave interferometer, 
consider the transmission of only the lowest-order, 
longitudinal acoustic mode of a single 200 nm thick, 700 nm 
wide amorphous SixNy microbridge. Fig. 3 shows the net 
power spectral density, PSD, as a function of phonon 
frequency, ν, for fully ballistic transport across a single 
waveguide (black line, labelled BB), an interferometer with a 
Fabry-Perot response, having both waveguides of equal length 
(green line, labelled FP) and an interferometer with a Mach-
Zehnder-like response, having both waveguides of different 
length (blue area plot, labelled MZ). We can see that for the 
case in which l1 = l2 = 2 μm, there is periodic interference as a 
function of phonon frequency, relative to the case when there 
is no interferometer, even though there is no path-length 
difference between the two arms. This behaviour can be 
explained by the resonant internal reflections from the ports 
within the interferometer. In other words, energy is trapped in, 
and circulates around, the two arms. These higher-order 
internally reflected waves interfere in the same manner as a 
Fabry-Perot filter and reduce the net flux even though the 
arms have equal lengths. The case for which l1 = 2 μm and l2 = 
4 μm shows a greater reduction in net thermal flux, and we see 
additional resonant features. These occur due to the addition 
of interferometric interference, and the greater number of 
differential path lengths within the directed-flow network 
when l1 ≠ l2. For this example, when l1 = l2 = 2 μm, the total 
net flux is reduced by 20.7 per cent, and when l1 = 2 μm and l2 
= 4 μm the total net flux is reduced by 58.9 per cent. 

E. Diffusive Transport 
 
Fig. 4 shows the net PSD transmitted across a single 

waveguide (black dashed line, labelled BB) and an 
interferometer for which l1 = 2 μm and  l2 = 4 μm (coloured 
lines), with hot and cold termination temperatures of 100 mK 
and 60 mK, respectively. The 𝑔 of every cell is calculated by 
setting 𝑔! for the shorter waveguide. To better illustrate the 
behavior of the interferometer, we again include only the 
lowest-order longitudinal mode of a single 200 nm thick, 700 
nm wide amorphous SixNy microbridge. The consequence of 
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decreasing the value of 𝑔! from a highly ballistic case, 
𝑔! = 0.9999, to a highly diffusive case, 𝑔! = 0.001, is 
shown.  In the ballistic limit, we see strongly resonant 
features, as higher order internal reflections remain phase 
coherent. But as 𝑔! decreases, these resonant peaks flatten, as 
one would expect. This occurs not simply due to the reduction 
in the resonator quality factor as a consequence of the losses, 
but also because of the introduction of phase-incoherent re-
radiation by the inelastic losses. In other words, the individual 
arms move over into the diffusive transport regime and the 
interference fringes are lost.   

 

 
Fig 4 PSD against ν for various values of 𝑔! . (Inset) Temperature, T, at 

different distances, L, from the hot termination 

 

 
 

Fig 5 Normalised correlation coefficient, V, between waves travelling in the 
same direction at distances L = L1 and L = L2 from the hot termination. (Top) 

𝑔! = 0.9999 (Bottom) 𝑔! = 0.001. 

The inset of Fig. 4 shows the temperature of an arm as a 
function of position, ΔL, from the hot termination. In the 
ballistic limit the counter-propagating thermal fluxes are only 
lightly coupled to one another, and the losses thermalise 
everywhere at the equilibrium temperature determined by the 
radiation of the two thermal reservoirs. As 𝑔! decreases, the 

temperature becomes position-dependent, we exit the 
equilibrium state, and end temperatures tend towards adopting 
the localised hot and cold temperatures at the respective ends 
of the interferometer. 

The transition from ballistic to highly diffusive behaviour is 
also illustrated in Fig. 5, which shows the normalised 
correlation coefficient between waves propagating in the same 
direction but at different planes. In the ballistic limit, the wave 
at every point along the waveguide is nearly perfectly 
correlated with the wave at every other (not perfectly, because 
there are two incoherent sources: the hot and cold baths). 
However, in the diffusive limit, the propagating waves 
become less correlated with points that are further away: as is 
expected for diffusive transport, where the waves decohere on 
the scale-size of the attenuation length. 
 

F. Thermal Filtering by Interferometers 

 
Fig 6  Integrated net thermal flux, 𝑃, transmitted from a TES with a critical 
temperature of 100 mK to a cold reservoir of temperature, 𝑇! . Results are 

shown for no interferometer, 1 interferometer and 2 interferometers in series. 

Fig 6. shows net thermal flux integrated across all frequencies. 
The net flux is transmitted from a TES of temperature 𝑇! =
  100 mK to a cold reservoir having temperature 𝑇!. We take 𝑇! 
to be the critical temperature of the TES bilayer and the flux, 
𝑃, to be the total net flux for a TES having four identical SixNy 
legs, each 200 nm thick and 700 nm wide. The plot shows the 
case for which there is no interferometer (blue line, labelled 
BB), one interferometer (green line, labelled 1 MZ) and for 
two interferometers (red line, labelled 2 MZ) in series per leg. 
Here, we model thermal transmission for the lowest six 
acoustic modes combined, and for interferometers that operate 
in the highly ballistic transport regime (𝑔! = 0.9999). For 
each mode we calculated its dispersion relationship using the 
elastic modelling technique described in our previous paper 
[9]. We know from this elastic-wave model that the majority 
of thermal power transmitted along a 700 nm x 200 nm SixNy 
microbridge is carried by the lowest 6 modes. In Fig. 6, the 
case having one interferometer used l1 = 2 μm and l2 = 4 μm. 
The double interferometer adds an l1 = 2 μm and l2 = 5 μm 
interferometer in-line with the other. Fitting the empirical 
relation 𝑃 = 𝐾(𝑇!! − 𝑇!) to the fluxes in Fig. 6, we 
determined the thermal constants 𝐾 and 𝑛, and calculated the 
commonly used expression for the thermal conductance, 
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𝐺 = 𝑛𝐾𝑇!!!! [11]. We found that the first interferometer 
reduces 𝐺 by 59 per cent and the addition of a second 
interferometer reduces 𝐺 by 74 per cent. Interestingly, the 
integrated flux becomes difficult to reduce below these levels 
because of perfect transmission at long wavelengths, where 
there is no interference.  

IV. FABRICATION 
 
A crucial question is whether it is possible to manufacture 

interferometric devices of this kind. Using optical lithography, 
we have manufactured TESs with SiNx support legs having 
cross-sections of 700nm x 200nm, and various configurations 
of patterned interferometers. Figure 7 shows an image of two 
of our devices. The left inset shows a leg of a device isolated 
by single interferometers. The right inset shows a leg of a 
device isolated by double interferometers. The left image has a 
Nb wire for biasing the TES. The bias wire has essentially no 
stiffness compared with the dielectric, and therefore does not 
change the dispersion relationships of the elastic modes. Also, 
because it is superconducting, it does not affect the thermal 
conductance. It is pleasing that we have been able to fabricate 
these structures, with TESs, with relative ease using optical 
lithography. We have also fabricated devices with varying 
separations between double interferometers, so as to 
investigate the effect of diffusively phase-decoupling two self-
coherent interferometers on the same leg. Additionally, we 
have fabricated TESs isolated by legs that vary in length from 
4 μm to 60 μm, with the aim of experimentally determining 
the elastic attenuation length of thin SiNx. The results of 
experiments on these devices will be reported in due course. 

 

 
Fig 7 (Main) Image of one of our TESs with single interferometers in each 
leg. (Inset left) Image of a support leg with a single interferometer. (Inset 

right) Image of a support leg with a double interferometer. 

 

V. CONCLUSIONS 
 

We have proposed the use of elastic interferometers for 
providing thermal isolation in low-noise Transition Edge 
Sensors. We believe that these structures could be potentially 
used for many other kinds of device, such as solid-state 
refrigerated platforms and thermally isolated Kinetic 
Inductance Detectors. We have presented a technique for 
calculating the behaviour of a variety of different kinds of 
interferometer operating in the ballistic to diffusive transport 
regime. Our early designs show that the thermal flux can be 
reduced to about 25% of the ballistic four-mode limit, which 
corresponds to NEPs of order 5 × 10-19 W Hz-1/2. We have 
successfully fabricated TESs having a variety interferometer 
designs, and have in fact shown that they are relatively 
straightforward to manufacture using optical lithography 
techniques. This work contributes to understanding how 
phononic structures might be used to limit heat transport in 
low-dimensional devices. 
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